

Company Environmental Science and Engineering Solutions

ph (802) 229-4600 fax (802) 229-5876

100 State Street, Suite 600 Montpelier, VT 05602

www.johnsonco.com

March 22, 2013

Ms. Patricia Coppolino Vermont Department of Environmental Conservation 1 National Life Drive – Davis 1 Montpelier, VT 05620-3704

Re: Park Street Residential Air Sampling

Bennington, Vermont JCO Project #: 3-2218-5

Dear Ms. Coppolino:

This letter provides a summary of air sampling performed by The Johnson Company in homes on Park Street in Bennington, Vermont, as specified by the approved Scope of Work dated November 20, 2012.

The Johnson Company sent a letter to residents at seven Park Street addresses on December 11, 2012, offering the opportunity to have samples collected of indoor air in their houses on January 7, 2013. These letters are included in Attachment A. Letters were sent to 402, 403, 406, 408, 410, 414, and 418 Park Street. The Johnson Company attempted to contact residents of the same addresses by telephone to inform them of the sampling program and requesting that they review the letter. Telephone conversations occurred with occupants of 403 and 406 Park Street, and voice mails were left for occupants of 408 – 418 Park Street. The telephone number associated with 402 Park Street was reported to be disconnected. During the week of December 31, 2012, a second voice mail was left for residents who had not been reached previously.

The Johnson Company was contacted by residents of 403, 406, 410, 414, and 418 Park Street to schedule sampling. An initial round of sampling was performed on January 7-9, 2013. No sampling was scheduled or performed at 402 and 408 Park Street. Samples were submitted to Northeast Analytical, which forwarded them to Pace Analytical of Minneapolis, MN for analysis of polychlorinated biphenyls (PCBs) by EPA Method 1668A. The laboratory reported significant levels of PCBs in the method blank associated with these samples, with method blank concentrations approximately equal to sample concentrations in some cases. As a result, the laboratory concluded that certain samples "do not provide significant information about PCB content." The Johnson Company contracted Phoenix Chemistry Services of Ferrisburgh, Vermont (Phoenix) for an independent evaluation of the sample results. This evaluation is provided in Attachment 1. Based on the information reviewed, Phoenix concluded that overall, the results "do not have usable data."

HRS Reference #69 Page 1 of 135

The Johnson Company attended a meeting with VT DEC and the Vermont Department of Health (VDH) to discuss the result on February 7, 2013. At this meeting, a consensus was reached to discard the results of the January sampling and repeat the sampling in the same residences. All residents that previously participated in the sampling agreed to a second sampling event. As with the January effort, no sampling was performed at 402 and 408 Park Street in February of 2012.

Sample Collection Summary

Ten samples were collected from the five residences, as summarized in the table below.

Address	Locations Sampled
403 Park Street	1) Living Room
406 Park Street	1) Basement, 2) Dining Room
410 Park Street	1) Basement, 2) Living Room
414 Park Street	1) Basement, 2) Living Room
418 Park Street	1) Basement, 2) Kitchen, 3) Outdoor

Sample Collection Methods

Samples were collected by using a personal sampling pump (SKC 224-PCXR8) to draw air through a polyurethane foam (PUF) cartridge provided by the laboratory. Before connecting the sample cartridge, the pump was connected to a flow calibrator (Bios Defender 510M) and a spare PUF cartridge used for calibration, and adjusted to a target flow rate of 5.0 liters per minute (Lpm). In some cases, the sampling pump was not able to attain a flow rate of 5.0 Lpm or would not run continuously at this flow rate; in those cases, a flow rate between 4.0 and 5.0 Lpm was used. The calibrator was used to check the flow rate after sampling, and the average flow rate was used for calculating the sample volume. Field sampling forms are attached.

Sample collection started on February 20. With the exception of 403 Park Street, two samples were collected from each residence, as specified in the Scope of Work dated November 20, 2012. A sample was not collected from the basement of 403 Park Street, based on The Johnson Company's understanding that EPA or its contractor recently collected a sample from this location. Photographs of all sample locations are attached.

Samples were placed in a cooler on ice and submitted to Pace Analytical for analysis of PCBs by EPA Method 1668A. PCBs were analyzed as congeners, and summed by the laboratory to provide a concentration of PCB homologs and total PCBs. Laboratory results are attached.

The sample volume was determined by multiplying the sampling duration by the average of the pre- and post-collection flow rates. The average flow rate was corrected for standard conditions using the average temperature over the sampling period for each space. An average barometric pressure for the sampling period was obtained from a weather station approximately 0.5 miles south of the homes sampled (KVTBENNI4).

HRS Reference #69 Page 2 of 135

RESULTS

Analytical results are presented in Tables 1 and 2. Table 1 summarizes the total PCB concentration in air (in nanograms per cubic meter; ng/m³) for each sample and Table 2 shows the calculations for the 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxic Equivalents (TEQs) for the twelve "dioxin-like" PCBs. The total 2,3,7,8-TCDD TEQ, which is compared to the 2,3,7,8-TCDD Hazardous Ambient Air Standard (HAAS), was developed to facilitate risk assessment. Table 3 is a summary of the TEQ values compared to the HAAS.

The Table 1 results indicate that the total PCB concentration is highest in the 406 Park Street Dining Room sample at 131 ng/m³, this result is an order of magnitude greater than the other sample results. The lowest indoor concentrations, ranging from 4.3 to 4.9 ng/m³ were measured in both sampled rooms at 410 Park Street and in the Living Room at 414 Park Street. The ambient air sample, collected outside 418 Park Street, contained the lowest total PCB concentration: 0.2 ng/m³.

As shown in Table 2 and summarized in Table 3, of the 10 samples, 5 did not contain any dioxin-like congeners, 4 contained dioxin-like congeners but their total TEQs were below the HAAS, and 1 contained dioxin-like congeners that exceeded the HAAS of 0.023 pg/m³. The sample from the 403 Park Street Living Room contained at TEQ of 0.026 pg/m³, which is above the HAAS. TEQs for the 414 Park Street Living Room and the 418 Park Street Kitchen were 0.006 pg/m³. The 406 Park Street Basement TEQ was slightly higher at 0.009 pg/m³. Although the highest total PCB concentration was measured at in the sample from the 406 Park Street Dining Room, its TEQ of 0.020 pg/m³ was below the HAAS.

To evaluate the potential for the presence of separate PCB sources in the houses, which could increase the total PCB concentrations detected in the air samples, each congener profile for the indoor samples was plotted in Figure 1. A congener profile is a plot that illustrates the percentage of each of 209 congeners present in the sample. Because PCBs are manufactured chemical products, each Aroclor has a signature congener profile, as shown in Figure 2. When PCBs are released to the environment, weathering and dechlorination can change the signature slightly; however, the profile of the peaks remains relatively consistent. As Figure 1 shows, the congener profiles for all of the air samples from both the basements and living areas are similar compared to other congener profiles provided in Figure 2. A comparison of Figures 1 and 2 indicates that the congener profiles in the houses are most similar to those for Aroclors 1016 and 1242, and dissimilar to Aroclors 1254 or 1260. The shape of the profiles also indicates that the lightest PCB congeners have migrated to the upper level of the houses, whereas the heavier congeners are present at higher percentages in the basement samples. However, as the TEQ calculations show, the relatively heavy congener 118 is present on both levels some houses.

HRS Reference #69 Page 3 of 135

March 22, 2013 Page 4

Thank you for this opportunity to be of service to VT DEC. Please feel free to contact me if you have any questions or concerns regarding the work described in this letter.

Sincerely,

THE JOHNSON COMPANY, INC.

Rhonda Kay, P.B.

Project Manager

E-mail: rtk@jcomail.com

Attachments

K:\3-2218-5\Air Sampling Jan-Feb 2013\February 2013 Sampling letter report\032213 Jard February Air Sampling Letter Report.docx

HRS Reference #69 Page 4 of 135

PHOTOGRAPHS

HRS Reference #69 Page 5 of 135

Sample ID: 403 Living Room

Note: Sample located in living room based on July 2012 air sampling results provided by VT DEC, in which the total PCB concentration in the living room was the greatest of first-floor samples.

HRS Reference #69 Page 6 of 135

Sample ID: 406 Basement

Sample ID: 406 Dining Room

Note: Basement access is adjacent to dining room.

HRS Reference #69 Page 7 of 135

Sample ID: 410 Basement

Sample ID: 410 Living Room

Note: Former basement access is in closet adjacent to sampler.

HRS Reference #69 Page 8 of 135

Sample ID: 414 Basement

Sample ID: 414 Living Room

Notes: Basement access is through living room

HRS Reference #69 Page 9 of 135

Sample ID: 418 Basement

Sample ID: 418 Kitchen

HRS Reference #69 Page 10 of 135

418 Park Street (Outdoor Air)

HRS Reference #69 Page 11 of 135

TABLES

HRS Reference #69 Page 12 of 135

Table 1. Park Street Air Sampling Results Summary February 20-21, 2013

	Date ar	nd Time	Sampling Time	
Sample	Start	Stop	(minutes)	Notes
403 Living Room	2/20/2013 11:22	2/21/2013 11:18	1436	
406 Basement	2/20/2013 12:39	2/21/2013 12:44	1445	
406 Dining Room	2/20/2013 12:40	2/21/2013 12:43	1443	
410 Basement	2/20/2013 13:15	2/21/2013 13:14	1439	
410 Living Room	2/20/2013 13:30	2/21/2013 13:23	1433	
414 Basement	2/20/2013 9:19	2/21/2013 9:21	1442	Could not increase flow rate above 4.3 L/min
414 Living Room	2/20/2013 9:22	2/21/2013 9:20	1438	
418 Basement	2/20/2013 10:43	2/21/2013 10:42	1439	
418 Kitchen	2/20/2013 10:36	2/21/2013 10:28	1432	
418 Outdoor	2/20/2013 10:39	2/21/2013 10:34	1435	

		Flow Rate (Lpm)		Average Barometric	Tomporeture	Average Flow	Total PCB	Calculated PCB
Sample	Pre-sample	Post-Sample	Average	Pressure (in Hg)	Temperature (°F)	Rate (Lpm @ STP)	Mass in PUF (ng)	Concentration in Air* (ng/m³)
403 Living Room	4.05	3.86	3.96	29.9	70	3.9	193	34.5
406 Basement	4.01	3.8	3.91	29.9	55	3.7	187	34.7
406 Dining Room	4.11	3.5	3.81	29.9	73	3.8	713	131.0
410 Basement	4.22	3.79	4.01	29.9	53	3.8	24.4	4.4
410 Living Room	4.07	4.13	4.10	29.9	66	4.0	24.9	4.3
414 Basement	4.32	3.79	4.06	29.9	45	3.8	99.6	18.2
414 Living Room	5.01	4.74	4.88	29.9	68	4.8	33.9	4.9
418 Basement	4.98	4.91	4.95	29.9	62	4.8	72	10.4
418 Kitchen	5.02	4.91	4.97	29.9	74	4.9	105	14.9
418 Outdoor	4.7	4.8	4.75	29.9	26	4.3	1.43	0.2

Trip Blank 0.14 Method Blank 0.218

^{*}Concentration of PCBs in air = [PCB result / (Average flow rate * Sampling time)] * 1000 liters per m³

G			403 1	Living Roon	1				406 H	Basement		
Congener		Result			TEQ	TEQ		Result		TEF	TEQ	TEQ
IUPAC#	Qualifier	(ng)	(ng/m ³)	-	(ng/m^3)	(pg/m ³)	Qualifier	(ng)	(ng/m ³)	-	(ng/m ³)	(pg/m^3)
77		ND	0.000	0.0001	0.0	0.0	EMPC	0.066	0.012	0.0001	1.22E-06	0.001
81	EMPC	0.0219	0.004	0.0003	1.17E-06	0.001		0.0239	0.004	0.0003	1.33E-06	0.001
105		1.12	0.200	0.00003	6.01E-06	0.006		0.25	0.046	0.00003	1.39E-06	0.001
114		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000
118		3.23	0.578	0.00003	1.73E-05	0.017		0.804	0.149	0.00003	4.47E-06	0.004
123	EMPC	0.0632	0.011	0.00003	3.39E-07	0.000	EMPC	0.0212	0.004	0.00003	1.18E-07	0.000
126		ND	0.000	0.1	0.00E+00	0.000		ND	0.000	0.1	0.00E+00	0.000
156 + 157		0.212	0.038	0.00003	1.14E-06	0.001		ND	0.000	0.00003	0.00E+00	0.000
167		0.0823	0.015	0.00003	4.41E-07	0.000		ND	0.000	0.00003	0.00E+00	0.000
169		ND	0.000	0.03	0.00E+00	0.000		ND	0.000	0.03	0.00E+00	0.000
189		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000
Total (ng/m ³)			0.846						0.216			
Total TEQ (pg/m ³)						0.026						0.009

¹⁾ Reported concentrations are in parts per billion (ng/m³).

²⁾ EMPC = Estimated Maximum Possible Concentration

³⁾ J = Estimated Value

⁴⁾ TEF = Toxic Equivalency Factor determined by World Health Organization (2005).

⁵⁾ TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxic Equivalent (concentration * TEF)

⁶⁾ HAAS = Hazardous Ambient Air Standard for 2,3,7,8-TCDD =

^{0.023} pg/m3

⁷⁾ PCB congeners identified according to International Union of Pure and Applied Chemistry numbering system.

⁸⁾ PCB congeners 156 and 157 co-elute; combined concentration reported.

⁹⁾ Black cell, white text indicates TEQ exceeds HAAS

¹⁰⁾ If the concentration was reported as not detected (ND), a 0.0 is shown for the concentration for calculation purposes

G		406 Dining Room							410 Basement					
Congener		Result			TEQ	TEQ	Result			TEF	TEQ	TEQ		
IUPAC#	Qualifier	(ng)	(ng/m ³)	•	(ng/m ³)	(pg/m^3)	Qualifier	(ng)	(ng/m ³)		(ng/m ³)	(pg/m^3)		
77		0.305	0.056	0.0001	5.60E-06	0.006		ND	0.000	0.0001	0.00E+00	0.000		
81		0.0465	0.009	0.0003	2.56E-06	0.003		ND	0.000	0.0003	0.00E+00	0.000		
105		0.499	0.092	0.00003	2.75E-06	0.003		ND	0.000	0.00003	0.00E+00	0.000		
114		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000		
118		1.5	0.276	0.00003	8.27E-06	0.008		ND	0.000	0.00003	0.00E+00	0.000		
123		0.0464	0.009	0.00003	2.56E-07	0.000		ND	0.000	0.00003	0.00E+00	0.000		
126		ND	0.000	0.1	0.00E+00	0.000		ND	0.000	0.1	0.00E+00	0.000		
156 + 157		0.0482	0.009	0.00003	2.66E-07	0.000		ND	0.000	0.00003	0.00E+00	0.000		
167		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000		
169		ND	0.000	0.03	0.00E+00	0.000		ND	0.000	0.03	0.00E+00	0.000		
189		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000		
Total (ng/m ³)			0.449						0.000					
Total TEQ (pg/m ³)			_		_	0.020	_			_	_	0.000		

¹⁾ Reported concentrations are in parts per billion (ng/m³).

10) If the concentration was reported as not detected (ND), a 0.0 is shown for the concentration for calculation purposes

²⁾ EMPC = Estimated Maximum Possible Concentration

³⁾ J = Estimated Value

⁴⁾ TEF = Toxic Equivalency Factor determined by World Health Organization (2005).

⁵⁾ TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxic Equivalent (concentration * TEF)

⁶⁾ HAAS = Hazardous Ambient Air Standard for 2,3,7,8-TCDD =

⁷⁾ PCB congeners identified according to International Union of Pure and Applied Chemistry numbering system.

⁸⁾ PCB congeners 156 and 157 co-elute; combined concentration reported.

⁹⁾ Black cell, white text indicates TEQ exceeds HAAS

G			410 Liv	ing Room			414 Basement					
Congener IUPAC#	Result			TEF	TEQ	TEQ		Result			TEQ	TEQ
IUPAC#	Qualifier	(ng)	(ng/m ³)		(ng/m ³)	(pg/m^3)	Qualifier	(ng)	(ng/m ³)	•	(ng/m ³)	(pg/m^3)
77		ND	0.000	0.0001	0.00E+00	0.000		ND	0.000	0.0001	0.0	0.0
81		ND	0.000	0.0003	0.00E+00	0.000		ND	0.000	0.0003	0.0	0.0
105		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.0	0.0
114		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.0	0.0
118		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.0	0.0
123		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.0	0.0
126		ND	0.000	0.1	0.00E+00	0.000		ND	0.000	0.1	0.0	0.0
156 + 157		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.0	0.0
167		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.0	0.0
169		ND	0.000	0.03	0.00E+00	0.000		ND	0.000	0.03	0.0	0.0
189		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.0	0.0
Total (ng/m ³)			0.000		_	_			0.0	_	_	
Total TEQ (pg/m ³)						0.000						0.0

¹⁾ Reported c 1) Reported concentrations are in parts per billion (ng/m³).

²⁾ EMPC = E 2) EMPC = Estimated Maximum Possible Concentration

³⁾ J = Estimat 3) J = Estimated Value

⁴⁾ TEF = Tox 4) TEF = Toxic Equivalency Factor determined by World Health Organization (2005).

⁵⁾ TEQ = 2,3,5) TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxic Equivalent (concentration * TEF)

⁶⁾ HAAS = H6) HAAS = Hazardous Ambient Air Standard for 2,3,7,8-TCDD =

⁷⁾ PCB conge 7) PCB congeners identified according to International Union of Pure and Applied Chemistry numbering system.

⁸⁾ PCB conge 8) PCB congeners 156 and 157 co-elute; combined concentration reported.

⁹⁾ Black cell, 9) Black cell, white text indicates TEQ exceeds HAAS

¹⁰⁾ If the con 10) If the concentration was reported as not detected (ND), a 0.0 is shown for the concentration for calculation purposes

G			414 Living	Room			418 Basement					
Congener	Result			TEF	TEQ	TEQ	Result			TEF	TEQ	TEQ
IUPAC#	Qualifier	(ng)	(ng/m ³)	-	(ng/m ³)	(pg/m^3)	Qualifier	(ng)	(ng/m ³)	-	(ng/m ³)	(pg/m^3)
77		ND	0.000	0.0001	0.0	0.0		ND	0.000	0.0001	0.0	0.0
81		ND	0.000	0.0003	0.00E+00	0.000		ND	0.000	0.0003	0.00E+00	0.000
105		0.2	0.034	0.00003	1.03E-06	0.001		ND	0.000	0.00003	0.00E+00	0.000
114	EMPC	0.0137	0.002	0.00003	5.97E-08	0.000		ND	0.000	0.00003	0.00E+00	0.000
118		0.648	0.094	0.00003	2.83E-06	0.003		ND	0.000	0.00003	0.00E+00	0.000
123	J	0.0129	0.002	0.00003	5.62E-08	0.000		ND	0.000	0.00003	0.00E+00	0.000
126		ND	0.000	0.1	0.00E+00	0.000		ND	0.000	0.1	0.00E+00	0.000
156 + 157		0.4	0.058	0.00003	1.75E-06	0.002		ND	0.000	0.00003	0.00E+00	0.000
167		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000
169		ND	0.000	0.03	0.00E+00	0.000		ND	0.000	0.03	0.00E+00	0.000
189		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000
Total (ng/m ³)			0.191						0.000			
Total TEQ (pg/m ³)						0.006						0.000

¹⁾ Reported concentrations are in parts per billion (ng/m³).

10) If the concentration was reported as not detected (ND), a 0.0 is shown for the concentration for calculation purposes

²⁾ EMPC = Estimated Maximum Possible Concentration

³⁾ J = Estimated Value

⁴⁾ TEF = Toxic Equivalency Factor determined by World Health Organization (2005).

⁵⁾ TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxic Equivalent (concentration * TEF)

⁶⁾ HAAS = Hazardous Ambient Air Standard for 2,3,7,8-TCDD =

⁷⁾ PCB congeners identified according to International Union of Pure and Applied Chemistry numbering system.

⁸⁾ PCB congeners 156 and 157 co-elute; combined concentration reported.

⁹⁾ Black cell, white text indicates TEQ exceeds HAAS

G	418 Kitchen						418 Outdoor					
Congener	Result			TEF	TEQ	TEQ	Result			TEF	TEQ	TEQ
IUPAC#	Qualifier	(ng)	(ng/m ³)	-	(ng/m ³)	(pg/m^3)	Qualifier	(ng)	(ng/m ³)	-	(ng/m ³)	(pg/m^3)
77		ND	0.000	0.0001	0.0	0.0		ND	0.000	0.0001	0.0	0.0
81		ND	0.000	0.0003	0.00E+00	0.000		ND	0.000	0.0003	0.00E+00	0.000
105		0.29	0.041	0.00003	1.23E-06	0.001		ND	0.000	0.00003	0.00E+00	0.000
114		0.0301	0.004	0.00003	1.28E-07	0.000		ND	0.000	0.00003	0.00E+00	0.000
118		1.12	0.159	0.00003	4.76E-06	0.005		ND	0.000	0.00003	0.00E+00	0.000
123	J	0.0189	0.003	0.00003	8.03E-08	0.000		ND	0.000	0.00003	0.00E+00	0.000
126		ND	0.000	0.1	0.00E+00	0.000		ND	0.000	0.1	0.00E+00	0.000
156 + 157		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000
167		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000
169		ND	0.000	0.03	0.00E+00	0.000		ND	0.000	0.03	0.00E+00	0.000
189		ND	0.000	0.00003	0.00E+00	0.000		ND	0.000	0.00003	0.00E+00	0.000
Total (ng/m ³)			0.207	_	_	_	_		0.000	_		_
Total TEQ (pg/m ³)						0.006						0.000

¹⁾ Reported concentrations are in parts per billion (ng/m³).

10) If the concentration was reported as not detected (ND), a 0.0 is shown for the concentration for calculation purposes

²⁾ EMPC = Estimated Maximum Possible Concentration

³⁾ J = Estimated Value

⁴⁾ TEF = Toxic Equivalency Factor determined by World Health Organization (2005).

⁵⁾ TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxic Equivalent (concentration * TEF)

⁶⁾ HAAS = Hazardous Ambient Air Standard for 2,3,7,8-TCDD =

⁷⁾ PCB congeners identified according to International Union of Pure and Applied Chemistry numbering system.

⁸⁾ PCB congeners 156 and 157 co-elute; combined concentration reported.

⁹⁾ Black cell, white text indicates TEQ exceeds HAAS

Table 3. Park Street Air Sampling Results- PCB TEQ vs HAAS Summary February 20-21, 2013

 $HAAS = 0.023 \text{ pg/m}^3$

Total TEQ (pg/m³)
0.026
0.009
0.020
0.000
0.000
0.000
0.006
0.006
0.000
0.000

Notes:

TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) Toxic Equivalent

HAAS = Hazardous Ambient Air Standard for 2,3,7,8-TCDD

FIGURES

HRS Reference #69 Page 20 of 135

Figure 1. Congener Profiles of Basement and Living Area Samples (Outdoor Sample not shown)

Morrison and B.L. Murphy, 2006) Figure 2. Congener profiles of Aroclor mixtures (Figure 10.1.2 from Environmental Forensics by R.D.

HRS Reference #69 Page 22 of 135

LABORATORY REPORTS

HRS Reference #69 Page 23 of 135

Pace Analytical e-Report

Report prepared for:

THE JOHNSON COMPANY, INC 100 STATE ST SUITE 600 MONTPELIER, VT 05602 CONTACT: DAN BASTON

Project ID: JARD - BENNINGTON VT Sampling Date(s): February 21, 2013 Lab Report ID: 13020166

Client Service Contact: Chelsea Farmer (518) 346-4592

Analysis Included:

Method 1668 - Subcontracted

Test results meet all National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted in the case narrative. The results contained within this document relate only to the samples included in this report. Pace Analytical is respondible only for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Jan Pfelger

Dan Pfalzer Laboratory Director

Certifications: NYS (EPA: NY00906, ELAP: 11078), NJ (NY026), CT (PH-0337), MA(M-NY906), VA (1884)

Pace Analytical Services, Inc.| 2190 Technology Drive | Schenectady, NY 12308 Phone: 518.346.4592 | internet: www.pacelabs.com

HRS Reference #69 Page 24 of 135

This page intentionally left blank.

HRS Reference #69 Page 25 of 135

Table of Contents

Section 1: CASE NARRATIVE	. 4
Section 2: QUALIFIERS	. 6
Section 3: SAMPLE CHAIN OF CUSTODY	. 8
Section 4: Subcontract Analysis	.10

HRS Reference #69 Page 26 of 135

CASE NARRATIVE

HRS Reference #69 Page 27 of 135

CASE NARRATIVE

This data package (SDG ID: 13020166) consists of 11 polyurethane foam samples received on 2/22/2013. The samples are from Project Name: JARD - BENNINGTON VT.

This sample delivery group consists of the following samples:

<u>Lab Sample ID</u>	Client ID	Collection Date
AQ02478	TRIP BLANK	2/21/2013
AQ02479	414 BASEMENT	2/21/2013 09:21
AQ02480	414 LIVING ROOM	2/21/2013 09:20
AQ02481	418 KITCHEN	2/21/2013 10:28
AQ02482	418 OUTDOOR	2/21/2013 10:34
AQ02483	418 BASEMENT	2/21/2013 10:42
AQ02484	403 LIVING ROOM	2/21/2013 11:18
AQ02485	406 BASEMENT	2/21/2013 12:44
AQ02486	406 DINING ROOM	2/21/2013 12:43
AQ02487	410 BASEMENT	2/21/2013 13:14
AQ02488	410 LIVING ROOM	2/21/2013 13:23

Sample Delivery and Receipt Conditions

- (1.) All samples were delivered to the laboratory via UPS delivery service on 2/22/2013.
- (2.) All samples were received at the laboratory intact and within holding times.
- (3.) The following cooler temperature was recorded at sample receipt (Control limits are between 0-6 Degrees Celsius): 1.2 degrees Celsius. Please see Chain of Custody for details.

Subcontract Analysis

(1.) Please see the Pace-MN Lab report for Quality Assurance details.

Respectfully submitted,

Chelsea L. Farmer Project Manager

Page 5 of 106

QUALIFIERS

HRS Reference #69 Page 29 of 135

Organic Laboratory Qualifiers Defined

- B Denotes analyte observed in associated method blank or extraction blank. Analyte concentration should be considered as estimated.
- D Surrogate was diluted out. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria.
- E Denotes analyte concentration exceeded calibration range of instrument. Sample could not be re-analyzed at secondary dilution due to insufficient sample amount, quick turn-around request, sample matrix interference or hold time excursion. Concentration result should be considered as estimated.
- J Denotes an estimated concentration. The concentration result is greater than or equal to the Method Detection Limit (MDL) but less than the Reporting Limit (RL).
- P Indicates relative percent difference (RPD) between primary and secondary GC column analysis exceeds 40 % or indicates percent difference (PD) between primary and secondary GC column analysis exceeds 25 %.
- U Denotes analyte not detected at concentration greater than or equal to the RL. RL's are adjusted for sample weight/volume and dilution factors.
- Z Chromatographic interference due to PCB co-elution.
- * Value not within control limits.

Inorganic Laboratory Qualifiers Defined

- B Denotes analyte observed in associated method blank or digestion blank. Analyte concentration should be considered as estimated.
- E Denotes analyte concentration exceeded calibration range of instrument. Sample could not be re-analyzed at secondary dilution due to insufficient sample amount, quick turn-around request, sample matrix interference or hold time excursion. Concentration result should be considered as estimated.
- J Denotes an estimated concentration. The concentration result is greater than or equal to the Method Detection Limit (MDL) but less than the Reporting Limit (RL).
- U Denotes analyte not detected at concentration greater than or equal to the RL. RL's are adjusted for sample weight/volume and dilution factors.
- * Value not within control limits.

SAMPLE CHAIN OF CUSTODY

HRS Reference #69 Page 31 of 135

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

			<13020166P1>	
Section A Section Required Client Information: Require	on B red Project Information:	Section C Invoice Information:		Page: of
Company The Johnson Company Report	To Rhonda Kay	Attention: Rhonda Key	130201661	1590165
100 State St. Suite (000 Copy To	<u> </u>	Company Name: The Johnson Comp.	dry _	INCY
Montpelie, VT 05602	Orden No. 20	100 State St. Suite loo	Nother NPDES F G	ROUND WATER DRINKING WATER
Phone: Story Story Print	se Order No.: 3-2218-5 (CUS)	Reference: BW Cotos e		CRA OTHER
82-229-4600 802-229-5016 Project N	()ARCD	Pace Project No Sea Fa	Site Location -	
Requested Due Date/TAT: Project N	Number: 3-2218-5	Pace Profile #:	STATE:	
			Requested Analysis Filtered (Y/	0
Section D Matrix Codes Required Client Information MATRIX / CODE Drinking Water DW	COLLECTED COMPOSITE CONDOSTE CONTROLL CONT		N	
Water WT Waste Water WW Product P Soil/Solid SL SAMPLFID Oil OL	START END/GRAB			(N)
SAMPLE ID Oil OL Wipe WP (A-Z, 0-9 / ,-) Air AR Sample IDs MUST BE UNIQUE Tissue TS Other OT) = (G	Ved ved is Test	(1)	Chlorine
# * * * * * * * * * * * * * * * * * * *	AMPLE AMPLE	# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	PCBs	Residual Chlorine (Y/N)
1 Trip Blank	AC DATE TIME DATE TIME O	# DITTIZZ 20 =		
2 414 Basement	PRC 2/20130919 2/21/190921	1121111	X	AQ02478
3 414 Living Room	ARC 4218 0922 421/30920		8	AQ024-79 AQ02480
4 418 Kitchen	ABC 2/2013 1036 2/21/13 1025			AQ02481
5 418 Quidaer	AR C 2/24/13 1039 2/21/13 1034		8	AQ02482
6 418 Basement	ARC 22013 1043 42413 1042	18	8	1902483
1 403 Living Room	ARC 42013 1122 4210 1118	(8)	Y	AQ02484
8 400 Basement 9 400 Dining Room	RC 2/2/13 1239 2/21/31244		X	AQ02485
The Control of the Control	AR C 2/20/18 1240 42/12/13	18	8	AQ02486
10 410 Basement	ARC 2/20/13 13/15 2/21/13 13/4 ARC 2/20/13 1330 2/21/13 1323	<u> </u>	4	AQ02487
12 Elving ROGIV	HRC C/20/13 (3 & 2/24/3 (323)			AQ02488
ADDITIONAL COMMENTS	RELINQUISHED BY AFFILIATION DATE	TIME ACCEPTED BY	AFFILIATION DATE TIME	SAMPLE CONDITIONS
	Ele /2 2/21/13	1400 UPS		o, iiii 22 oo ko, kieko
9	UPS 2/22/13		2/24/13 14:0	
	W 3 2/2/15	10:31 (Ingc)	OWE 10 2/22/18 10:	31
	SAMPLER NAME AND SIGNATURE			° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
ORIGIN,	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	Daniel Basia	DATE Cinned 3 1	Temp in °C Received on Ice (Y/N) Custody Sealed Cooler (Y/N) (Y/N)
*Important Note: By signing this form you are accepting Page's No	IET 00 4	- AM PIX	(MM/DD/YY): 02/20/13	Sa Sa

Page 9 of 106

Subcontract Analysis

HRS Reference #69 Page 33 of 135

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Chelsea Farmer Pace Analytical 2190 Technology Drive Schenectady NY 12308

> REPORT OF LABORATORY **ANALYSIS FOR PCBs**

Report Information:

Pace Project #: 10220944

Sample Receipt Date: 02/23/2013 Client Project #: 13020166 TCJ

Client Sub PO #: N/A State Cert #: N/A

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

March 12, 2013

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

March 12, 2013

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eleven samples submitted by a representative of Pace Analytical - New York. The samples were analyzed for the presence or absence of polychlorobiphenyls (PCBs) using a modified version of USEPA Method 1668C. Reporting limits were set to correspond to the levels determined by a limit of quantitation study. Levels below the calibration range were flagged "J" as estimated values.

The recoveries of the isotopically-labeled PCB internal standards in the sample extracts ranged from 9-123%. With one exception, flagged "R" on the LCS table, the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1668C. Since the quantification of the native congeners was based on isotope dilution and internal standard methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

Incorrect isotope ratios were obtained for selected PCB congeners. The affected congeners were flagged "I" on the results tables. Any associated target analyte detections were provided under the estimated maximum possible concentration (EMPC) column on the results tables.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain low levels of two native PCB congeners. In some cases, the sample extracts were found to contain similar levels of these congeners and were flagged "B" on the results tables. In general, levels less than ten times the background are not considered statistically different from the background.

Laboratory spike samples were also prepared with the sample batch using clean PUFs that had been fortified with native standards. The results show that the spiked native compounds were recovered at 92-122%, with relative percent differences of 0.0-12.1%. These values were within method limits. Matrix spikes were not extracted with this sample batch.

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101 9507
Georgia (DNR)	959	Oklahoma	D9922
Guam	959	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN300001-001
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	03086	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

CHAIN OF CUSTODY RECORD

10220944

DISPOSAL REQUIREMENTS: (To be filled in by Client)

RETURN TO CLIENT

tady, NY 12	2308	LRF# 13020166											
x (518) 381-	6055	(LAB US	SE ONLY)		1.0		ncurred fo	or disposal	(if hazardo	ous) or arcl	iival.	
PROJECT#/PRO	DJECT NAME:				ENT	ER AN	ALYSIS	AND ME	THOD N	UMBER	REQUE	STED	
13020166	i		PRESE	RVATIVE	CODE:								PRESERVATIVE KEY
LOCATION (CIT	Y/STATE) ADD	PRESS:	ВО	TTLE TY	PE:								0 - ICE
			ВО	TTLE SI	ZE:		L,	L) ,	L		1 - HCL
	VT		ERS										2 - HNO3 3 - H2SO4
REQUIRED TUP	RN AROUND TI		NTAIN		1,666								4 - NaOH 5 - Zn. Acetate
NAME OF COU	RIER (IF USED)	:	P		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ /	/ /	/	/ /	/ /	/ /	/	6 - MeOH 7 - NaHSO4 8 - Other (Na2SO3)
VEALAB.COM		LAB	1 8	/							/ _		
	GRAB/	SAMPLE ID	I ₹	/							/		
IE MATRIX	COMP	(LAB USE ONLY)		/						/		REM	MARKS:
PF10	GRAB	AQ02478	1	X									
):21 PF10	COMP	AQ02479	1	X									
):20 PF10	COMP	AQ02480	1	X									
):28 PF10	COMP	AQ02481	1	X									
):34 PF10	COMP	AQ02482	1	<u> </u>			<u> </u>						
):42 PF10	COMP	AQ02483	1	X									
:18 PF10	COMP	AQ02484	1	X		ļ							
2:44 PF10	COMP	AQ02485	1	X									
2:43 PF10	COMP	AQ02486	1	X									
14 PF10	COMP	AQ02487	1	X		<u> </u>	<u> </u>						
COC TAPE:	Y N								OTHER N	OIES:			
	ANCIES:		RECVD V			Y	N I	DEI MO	HEUED BY		<u> </u>	REC	CEIVED BY
	SIGNATURE	RELINQUISHED BY	SIGNATUR		AED BA		SIGNATUR		JOHED D1		SIGNATURE		
	PRINTED NAME		PRINTED N	AME			PRINTED N	AME			PRINTED N	ME	
0	COMPANY		COMPANY				COMPANY				COMPANY		
3 0930	DATE/TIME		DATE/TIME				DATE/TIME				DATE/TIME		
	PROJECT#/PRO 13020166 LOCATION (CIT VT REQUIRED TUR NAME OF COUR NEALAB.COM ME MATRIX PF10 9:21 PF10 9:21 PF10 0:28 PF10 0:34 PF10 0:42 PF10 1:18 PF10 2:44 PF10 2:44 PF10 2:44 PF10 2:44 PF10 14 PF10 COC TAPE: COC DISCREP/ EIVED BY	NEALAB.COM NEALAB.COM GRAB/ ME MATRIX COMP PF10 GRAB 3:21 PF10 COMP 3:20 PF10 COMP 3:28 PF10 COMP 3:34 PF10 COMP 3:34 PF10 COMP 3:42 PF10 COMP 1:18 PF10 COMP 1:18 PF10 COMP 2:44 PF10 COMP 2:44 PF10 COMP 3:40 PF10 COMP 40 COMP 41 PF10 COMP 42 PF10 COMP 5:41 PF10 COMP 60 C	PROJECT#/PROJECT NAME: 13020166 (LAB US	PROJECT#/PROJECT NAME: 13020166	PROJECT#/PROJECT NAME:	CTACK NY 12308 X (518) 381-6055	PROJECTM/PROJECT NAME:	REALAB.COM	Caddy, NY 12308 Caddy Ca	Caddy, NY 12308 Cate Cat	Ctady, NY 12308 LRF # 13020166 (LAB USE ONLY) ARCHIVAL BY RECEIVED A CARCHIVAL BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RELINQUISHED BY RECEIVED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RECEIVED	Catady	Carry 12308

PAGE 1 OF 2

E CHAIN O	F CUSTO	DY RE	ECORD)	PAGE 2 OF 2				DISPO	SAL R	EQUIR	EMENT	S: (To	be filled i	in by Client)
Pace Anal 2190 Technology Telephone (518) 3 www.pacelabs.com	Drive, Sche 346-4592	enectad Fax (5	ces, I ly, NY 12 518) 381	nc. 2308 -6055	LRF # 13020166 (LAB US	SE ONL'	Y)		Addition	-	DISPO ARCHI	VAL BY	RECEIV	ING LAB ING LAB lous) or archiv	val.
CLIENT (REPORTS TO BE SENT TO			PROJECT#/PR	OJECT NAME:		Ĭ		EN	TER AN	ALYSIS	AND M	ETHOD	NUMBE	REQUES	TED
PACE			13020166	;		PRESI	ERVATIV	E CODE:							PRESERVATIVE KEY
			LOCATION (CI	TY/STATE) ADI	DRESS:	ВС	TTLE T	YPE:							0 - ICE
PROJECT MANAGER:						ВС	OTTLE S	IZE:							1 - HCL
Chelsea Farmer			VT			RS		/							2 - HNO3 3 - H2SO4
SAMPLED BY: (Please Print)			REQUIRED TUI	RN AROUND T	ME: 3/15/2013	CONTAINERS		766.0							4 - NaOH 5 - Zn. Acetate
SAMPLING FIRM:			NAME OF COU	RIER (IF USED):	P P		PCBs by	/ /	/ /	/	/ /	/	/ /	6 - MeOH 7 - NaHSO4 8 - Other (Na2SO3
ELECTRONIC RESULTS	CHELSEA	F@NEA	LAB.COM		LAB	1 8								/	•
FAXED RESULTS	FAX#:			GRAB/	SAMPLE ID	NUMBER								/	
SAMPLE ID	DATE	TIME	MATRIX	COMP	(LAB USE ONLY)		V		/		/	/			REMARKS:
410 LIVING ROOM	2/21/13	13:23	PF10	COMP	AQ02488	1	X								
												and the same of th			
															
						-									
	SUPTEMP: 3	-	COC TAPE:	Y N			LY PRESE			N		OTHER N	OTES:		
BECEIVED BROKEN OR LEAKING:	(T)		COC DISCREPA	ANCIES:	Y N	RECVD V	WI HOLDIN		Y	N I	251 1101	Herieb by		8	RECEIVED BY
RELINQUISHED BY	SIGNATURE	RECEIVED BY	<u>, </u>	SIGNATURE	RELINQUISHED BY	SIGNATUR		IVED BY		SIGNATURI		IISHED BY		SIGNATURE	VECENED D.
BRINTED NAME O COUP	CS PRINTED NAME	sha	Chris			PRINTED N				PRINTED N	AME			PRINTED NAME	Ē
COMPANY PACE	COMPANY	٤		COMPANY		COMPANY				COMPANY				COMPANY	
DATE/TIME 2/22/13	DATE/TIME	3/13	0930	DATE/TIME		DATE/TIME				DATE/TIME				DATE/TIME	S.V.OSIMIS CO.

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.06

Document Revised: 28Jan2013

Page 1 of 1

Issuing Authority:
Pace Minnesota Quality Office

Client Name: Upon Receipt Courier: Fed Ex UPS Commercial Pace Tracking Number:	□USPS □Other:	***************************************	Project #	** WO#: 10220944
Custody Seal on Cooler/Box Present?	No '	Seals I	ntact? /	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Ba	gs 🔲 N		Other:	Temp Blank? Yes No
Thermom. Used: B88A912167504 B80512447 772	337080 1	Type of Ice	: Zwet	Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 5 4 Cooler Temp Temp should be above freezing to 6°C Correction F			<u>H</u> Da	Biological Tissue Frozen? Yes No te and Initials of Person Examining Contents:
Chain of Custody Present?	Yes	□No	□n/a	1.
Chain of Custody Filled Out?	 ✓ Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Wes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	No	□N/A	4.
Samples Arrived within Hold Time?	Ves	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	ØNo	□n/a	6.
Rush Turn Around Time Requested?	□Yes	No	□n/a	7.
Sufficient Volume?	⊘ Yes	□No	□N/A	8.
Correct Containers Used?	⊠Yes	□No	□N/A	9,
-Pace Containers Used?	□Yes	No	□n/a	#\$
Containers Intact?	□Æes		□n/a	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	□/Ñ/A	11.
Sample Labels Match COC?	[⊒ Y es	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:				
All containers needing acid/base preservation have been checked? Noncompliances are noted in 13. All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCI<2; NaOH>12)	□Yes		DN/A DN/A	13. HNO ₃ H ₂ SO ₄ NaOH HCI Sample #
Exceptions: VOA, Collform, TOC, Oil and Grease, WI-DRO (water)	□Yes	ДNo		Lot # of added preservative:
Headspace in VOA Vials (>6mm)?	Yes	□No	ZN/A	14.
Trip Blank Present?	Yes	□No	□N/A	15.
Trip Blank Custody Seals Present?	☐Yes	□No	ØN/A	·
Pace Trip Blank Lot # (If purchased):	,	·	**************************************	
CLIENT NOTIFICATION/RESOLUTION			,	Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:		-		
	SERVICE CONTRACTOR CON	**************************************	WHT/85000-F	
	WWW.			
	ocontroversky sky sky sky sky sky sky sky sky sky	W2000A0		
Project Manager Review: Note: Whenever there is a discrepancy affecting North Carolin	Compliance	a samnlas	a conv of th	Date: 02/26/13 his form will be sent to the North Carolina DEHNR Certification Office (i.e. out

HRS Reference #69

hold, incorrect preservative, out of temp, incorrect containers)

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

REPORT OF LABORATORY ANALYSIS

Appendix B

Sample Analysis Summary

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID Trip Blank AQ02478 10220944001 Lab Sample ID Filename P130305B_11 Injected By **CVS**

1.00 Sample **PUF Total Amount Extracted** Matrix % Moisture NA Dilution

Dry Weight Extracted NA Collected 02/21/2013 ICAL ID P130305B02 Received 02/23/2013 09:30

CCal Filename(s) P130305B 01 Extracted 02/28/2013 12:30 Method Blank ID **BLANK-35566** Analyzed 03/06/2013 08:50

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4',5-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4'-5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5,5'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HyCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206	8.479 11.858 12.194 20.451 16.664 29.091 20.791 36.705 37.325 27.616 41.115 40.428 39.875 39.522 44.452 34.173 47.639 46.448 51.076 40.428 53.989 46.163 56.640 57.567	3.38 3.50 1.72 1.60 1.07 1.09 0.82 0.78 0.77 1.64 1.62 1.59 1.62 1.57 1.59 1.27 1.26 1.28 1.30 1.06 1.07 0.90 0.90 0.77	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.458 0.715 0.631 0.735 0.720 1.03 0.899 1.23 1.34 1.00 1.35 1.36 1.42 1.37 1.31 1.24 3.25 1.60 1.59 0.954 1.12 1.43 1.72	23 36 32 37 36 52 45 62 67 50 68 68 71 68 65 62 81 80 79 48 56 56 72 86
13C-2,2',3,3',4,5,5',6,6'-NoCB 13CDeCB	208 209	53.364 58.472	0.78 0.72	2.0 2.0	1.18 1.44	59 72
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.312 37.409 43.715	1.11 1.64 1.04	2.0 2.0 2.0	1.12 1.30 1.63	56 65 81
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.130 26.526 34.424 43.211 56.381	1.62 0.80 1.55 1.26 0.91	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename Trip Blank AQ02478 10220944001 P130305B 11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1				ND		0.0200
2				ND		0.0200
3				ND		0.0200
4				ND		0.100
4 5				ND		0.0200
6				ND		0.0200
6 7				ND		0.0200
8				ND		0.250
9				ND		0.0200
10				ND		0.0200
11		19.684	1.53	0.140 B		0.139
12	12/13			ND		0.0100
13	12/13			ND		0.0100
14				ND		0.0100
15				ND		0.132
16				ND		0.100
17				ND		0.100
18	18/30			ND		0.200
19				ND		0.0264
20	20/28			ND		0.516
21	21/33			ND		0.540
22				ND		0.380
23				ND		0.00500
24				ND		0.0200
25				ND		0.100
26	26/29			ND		0.0400
27				ND		0.0200
28	20/28			ND		0.516
29	26/29			ND		0.0400
30	18/30			ND		0.200
31				ND		0.520
32				ND		0.100
33	21/33			ND		0.540
34				ND		0.00500
35				ND		0.0200
36				ND		0.0100
37				ND		0.212
38				ND		0.0100
39				ND		0.0100
40	40/41/71			ND		0.120
41	40/41/71			ND		0.120
42				ND		0.200
43	43/73			ND		0.0200
44	44/47/65			ND		0.600
45	45/51			ND		0.0800
46				ND		0.0100
47	44/47/65			ND		0.600
48				ND		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

Trip Blank AQ02478 10220944001 P130305B 11

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69			ND		0.400
50	50/53			ND		0.0200
51	45/51			ND		0.0800
52				ND		0.492
53	50/53			ND		0.0200
54				ND		0.0100
55				ND		0.0100
56				ND		0.200
57				ND		0.0100
58				ND		0.0100
59	59/62/75			ND		0.0300
60				ND		0.200
61	61/70/74/76			ND		0.800
62	59/62/75			ND		0.0300
63				ND		0.0100
64				ND		0.200
65	44/47/65			ND		0.600
66				ND		0.336
67				ND		0.0100
68				ND		0.0100
69	49/69			ND		0.400
70	61/70/74/76			ND		0.800
71	40/41/71			ND		0.120
72	10/70			ND		0.0100
73	43/73			ND		0.0200
74	61/70/74/76			ND		0.800
75 70	59/62/75			ND		0.0300
76	61/70/74/76			ND		0.800
77				ND ND		0.0400
78 70				ND ND		0.0100
79 80				ND ND		0.0100
81				ND ND		0.0100 0.0120
82				ND ND		0.0400
83				ND ND		0.0400
84				ND ND		0.0400
85	85/116/117			ND		0.120
86	86/87/97/108/119/125			ND		0.240
87	86/87/97/108/119/125			ND ND		0.240
88	88/91			ND		0.0200
89	00/31			ND		0.0100
90	90/101/113			ND		0.120
91	88/91			ND		0.0200
92	55.5 .			ND		0.0100
93	93/98/100/102			ND		0.0400
94	23.23, 133, 132			ND		0.0200
95				ND		0.0760
96				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename Trip Blank AQ02478 10220944001 P130305B 11

97 86/87/97/108/119/125 ND 0.240 98 93/98/100/102 ND 0.0400 99 ND 0.0400 100 93/98/100/102 ND 0.0400 101 90/101/113 ND 0.0400 102 93/98/100/102 ND 0.0400 103 ND 0.0100 104 ND 0.0100 105 ND 0.0100 106 ND 0.0100 107 107/124 ND 0.0200 108 86/87/97/108/119/125 ND 0.0200 108 86/87/97/108/119/125 ND 0.0100 110 110/115 ND 0.0100 111 ND 0.0100 112 ND 0.0100 113 90/101/113 ND 0.0100 114 ND 0.0100 115 110/115 ND 0.0100 116 85/116/117 ND 0.0100 117 85/116/117 ND 0.0200 120 ND 0.0256 119 86/87/97/108/119/125 ND 0.0256 120 ND 0.0100 121 ND 0.0100 122 ND 0.0100 123 ND 0.0100 124 107/124 ND 0.0100 125 86/87/97/108/119/125 ND 0.0100 126 128/166 ND 0.0100 127 ND 0.0100 128 128/168 ND 0.0200 130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0100 135 135/151 ND 0.0200 139 139/140 ND 0.0200 139 139/140 ND 0.0200 140 139/140	IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
98 93/98/100/102	97	86/87/97/108/119/125			ND		0.240
99							
100 93/98/100/102		00.00.100.10					
101 90/101/113		93/98/100/102					
102							
103	102						
104	103	00.00.100.10					
105							
106							
107 107/124	106						
108 86/87/97/108/119/125		107/124					
109							
110		00/01/01/100/11/01					
111		110/115					
112		110/110					
113 90/101/113							
114	113	90/101/113			ND		
115 110/115		00/101/110					
116 85/116/117		110/115					
117 85/116/117							
118							
119 86/87/97/108/119/125 ND 0.240 120 ND 0.0100 121 ND 0.0100 122 ND 0.0100 123 ND 0.0100 124 107/124 ND 0.0200 125 86/87/97/108/119/125 ND 0.0200 125 86/87/97/108/119/125 ND 0.0200 126 ND 0.0100 127 ND 0.0100 128 128/166 ND 0.0200 129 129/138/163 ND 0.0100 130 ND 0.0100 133 ND </td <td></td> <td>00/110/11/</td> <td></td> <td></td> <td></td> <td></td> <td></td>		00/110/11/					
120		86/87/97/108/119/125					
121		00/07/07/100/110/120					
122							
123							
124 107/124 ND 0.0200 125 86/87/97/108/119/125 ND 0.240 126 ND 0.0100 127 ND 0.0100 128 128/166 ND 0.0200 129 129/138/163 ND 0.0600 130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 137 ND 0.0100 137 ND 0.0600 139							
125 86/87/97/108/119/125 ND 0.240 126 ND 0.0100 127 ND 0.0100 128 128/166 ND 0.0200 129 129/138/163 ND 0.0100 130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND <		107/124					
126 ND 0.0100 127 ND 0.0100 128 128/166 ND 0.0200 129 129/138/163 ND 0.0600 130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 <t< td=""><td>125</td><td></td><td></td><td></td><td></td><td></td><td>0.0200</td></t<>	125						0.0200
127 ND 0.0100 128 128/166 ND 0.0200 129 129/138/163 ND 0.0600 130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200		00/07/01/100/110/120			ND		
128 128/166 ND 0.0200 129 129/138/163 ND 0.0600 130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200							
129 129/138/163 ND 0.0600 130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200		128/166					
130 ND 0.0100 131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200							
131 ND 0.0100 132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200		120/100/100					
132 ND 0.0100 133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200	131						
133 ND 0.0100 134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200							
134 134/143 ND 0.0200 135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200							
135 135/151 ND 0.0200 136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200		134/143					
136 ND 0.0100 137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200	135						
137 ND 0.0100 138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200	136	100/101					
138 129/138/163 ND 0.0600 139 139/140 ND 0.0200 140 139/140 ND 0.0200	137						
139 139/140 ND 0.0200 140 139/140 ND 0.0200		129/138/163					
140 139/140 ND 0.0200	139						
144 ND 0.0200							
141 IND (111/111)	141	100,110			ND		0.0200
142 ND 0.0100							
143 134/143 ND 0.0200		134/143					
144 ND 0.0100							

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename Trip Blank AQ02478 10220944001 P130305B 11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146				ND		0.0100
147	147/149			ND		0.0200
148				ND		0.0100
149	147/149			ND		0.0200
150				ND		0.0100
151	135/151			ND		0.0200
152				ND		0.0100
153	153/168			ND		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157			ND		0.0200
157	156/157			ND		0.0200
158				ND		0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162				ND		0.0100
163	129/138/163			ND		0.0600
164				ND		0.0100
165				ND		0.0100
166	128/166			ND		0.0200
167				ND		0.0200
168	153/168			ND		0.0400
169				ND		0.0120
170				ND		0.0100
171	171/173			ND		0.0200
172				ND		0.0100
173	171/173			ND		0.0200
174				ND		0.0100
175				ND		0.0100
176				ND		0.0100
177				ND		0.0100
178				ND		0.0100
179				ND		0.0100
180	180/193			ND		0.0400
181				ND		0.0100
182				ND		0.0100
183	183/185			ND		0.0200
184				ND		0.0100
185	183/185			ND		0.0200
186				ND		0.0100
187				ND		0.0100
188				ND		0.0100
189				ND		0.0200
190				ND		0.0100
191				ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename Trip Blank AQ02478 10220944001 P130305B 11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202				ND		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename Trip Blank AQ02478 10220944001 P130305B_11

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	0.140	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	0.140	

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 414 Basement AQ02479

10220944002 Lab Sample ID P130306A_04 Filename

Injected By **CVS**

1.00 Sample **PUF Total Amount Extracted** Matrix % Moisture NA Dilution

Dry Weight Extracted NA Collected 02/21/2013 09:21 ICAL ID P130306A02 Received 02/23/2013 09:30 02/28/2013 12:30 CCal Filename(s) P130306A 01 Extracted Method Blank ID **BLANK-35566** Analyzed 03/06/2013 14:17

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-4,4'-DiCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4',5-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4'-FeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,3',5,6,6'-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 200 200 208 209	8.491 11.858 12.205 20.472 16.674 29.089 20.805 36.736 37.339 27.647 41.129 40.442 39.888 39.536 44.466 34.187 47.670 46.462 51.108 40.442 54.009 46.177 56.660 57.587 53.384 58.492	3.42 3.30 1.63 1.61 1.10 1.08 0.80 0.77 0.82 1.62 1.57 1.58 1.57 1.61 1.59 1.30 1.28 1.30 1.24 1.07 1.04 0.92 0.88 0.81 0.79 0.71	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.486 0.646 0.612 0.656 0.655 1.02 0.840 1.08 1.21 1.03 1.24 1.29 1.28 1.26 1.18 1.40 3.03 1.52 1.43 1.21 1.37 1.50 1.80 1.37 1.59	24 32 31 33 51 42 54 61 51 62 64 63 59 70 76 71 64 61 68 75 90 68 79
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.310 37.423 43.729	1.09 1.61 1.08	2.0 2.0 2.0	1.01 1.30 1.70	51 65 85
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.140 26.540 34.438 43.225 56.380	1.37 0.79 1.63 1.28 0.90	2.0 2.0 2.0 2.0 2.0	NA NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Basement AQ02479 10220944002 P130306A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1		8.515	2.89	0.0420		0.0200
2				ND		0.0200
3		11.882	4.31 I		0.0244	0.0200
4		12.229	1.41	0.370		0.100
5				ND		0.0200
6		15.739	1.56	0.0347		0.0200
7				ND		0.0200
8				ND		0.250
9				ND		0.0200
10		12.493	1.59	3.53		0.0200
11		19.693	1.62	0.237 B		0.139
12	12/13	20.088	1.40	0.0761		0.0100
13	12/13	20.088	1.40	(0.0761)		0.0100
14				ND		0.0100
15		20.484	1.46	0.221		0.132
16		20.400	1.08	0.499		0.100
17		19.825	1.06	1.08		0.100
18	18/30	19.274	1.05	2.11		0.200
19		16.698	1.08	16.9		0.0264
20	20/28	24.343	1.04	3.27		0.516
21	21/33	24.611	1.03	0.936		0.540
22		25.098	1.08	1.06		0.380
23				ND 0.700		0.00500
24		20.268	0.98	0.702		0.0200
25	26/20	23.605	0.94	0.396		0.100
26	26/29	23.303	1.03	0.740		0.0400
27 28	20/28	20.100 24.343	1.09 1.04	2.64 (3.27)		0.0200 0.516
26 29	26/29	23.303	1.04	(0.740)		0.0400
30	18/30	19.274	1.05	(2.11)		0.200
31	10/30	23.991	1.00	2.60		0.520
32		21.107	1.05	7.34		0.100
33	21/33	24.611	1.03	(0.936)		0.540
34	21700	22.733	0.97	0.0322		0.00500
35				ND		0.0200
36				ND		0.0100
37		29.122	1.06	0.250		0.212
38				ND		0.0100
39		27.496	0.88	0.0681		0.0100
40	40/41/71	28.921	0.81	3.91		0.120
41	40/41/71	28.921	0.81	(3.91)		0.120
42		28.351	0.79	2.47		0.200
43	43/73	26.825	0.85	0.309		0.0200
44	44/47/65	27.714	0.79	7.16		0.600
45	45/51	24.410	0.78	5.20		0.0800
46		24.779	0.80	1.55		0.0100
47	44/47/65	27.714	0.79	(7.16)		0.600
48		27.479	0.79	1.78		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Basement AQ02479 10220944002 P130306A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69	27.144	0.79	6.80		0.400
50	50/53	23.605	0.78	4.58		0.0200
51	45/51	24.410	0.78	(5.20)		0.0800
52		26.573	0.83	`10. Ó		0.492
53	50/53	23.605	0.78	(4.58)		0.0200
54		20.822	0.76	Ò.20Ź		0.0100
55				ND		0.0100
56		33.231	0.78	0.552		0.200
57		30.984	0.80	0.0129		0.0100
58				ND		0.0100
59	59/62/75	28.100	0.78	0.878		0.0300
60		33.466	0.76	0.327		0.200
61	61/70/74/76	32.124	0.76	2.52		0.800
62	59/62/75	28.100	0.78	(0.878)		0.0300
63		31.738	0.80	Ò.055Ś		0.0100
64		29.173	0.81	2.41		0.200
65	44/47/65	27.714	0.79	(7.16)		0.600
66		32.493	0.78	1.32		0.336
67		31.453	0.80	0.0419		0.0100
68				ND		0.0100
69	49/69	27.144	0.79	(6.80)		0.400
70	61/70/74/76	32.124	0.76	(2.52)		0.800
71	40/41/71	28.921	0.81	(3.91)		0.120
72	10/70	30.196	0.65	0.0215		0.0100
73	43/73	26.825	0.85	(0.309)		0.0200
74	61/70/74/76	32.124	0.76	(2.52)		0.800
75 70	59/62/75	28.100	0.78	(0.878)		0.0300
76 77	61/70/74/76	32.124	0.76	(2.52)		0.800
77				NĎ		0.0400
78 79		 25 762		ND	0.0106	0.0100
79 80		35.763	0.57 I	ND	0.0106	0.0100 0.0100
81				ND ND		0.0120
82		36.920	1.85 I	ND	0.0407	0.0400
83		34.958	1.39	0.0202	0.0407	0.0400
84		32.308	1.60	0.0202		0.0400
85	85/116/117	32.300 	1.00	0.219 ND		0.120
86	86/87/97/108/119/125	35.679	1.49	0.273		0.240
87	86/87/97/108/119/125	35.679	1.49	(0.273)		0.240
88	88/91	32.090	1.57	0.161		0.0200
89	00/31	32.862	1.85 I	0.101	0.0202	0.0100
90	90/101/113	34.472	1.54	0.333		0.120
91	88/91	32.090	1.57	(0.161)		0.0200
92	55.51	33.801	1.49	0.0644		0.0100
93	93/98/100/102	31.554	1.31 I		0.0909	0.0400
94	55.55, 100, 102			ND		0.0200
95		31.118	1.55	0.721		0.0760
96		28.066	1.50	0.0596		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Basement AQ02479 10220944002 P130306A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
97	86/87/97/108/119/125	35.679	1.49	(0.273)		0.240
98	93/98/100/102	31.554	1.31 I		(0.0909)	0.0400
99		35.109	1.49	0.239		0.200
100	93/98/100/102	31.554	1.31 I		(0.0909)	0.0400
101	90/101/113	34.472	1.54	(0.333)		0.120
102	93/98/100/102	31.554	1.31 I		(0.0909)	0.0400
103		30.414	1.37	0.0129		0.0100
104				ND		0.0100
105				ND		0.200
106				ND		0.0100
107	107/124			ND		0.0200
108	86/87/97/108/119/125	35.679	1.49	(0.273)		0.240
109		39.435	1.67	0.0111		0.0100
110	110/115			ND		0.400
111				ND		0.0100
112				ND		0.0100
113	90/101/113	34.472	1.54	(0.333)		0.120
114				` NĎ		0.0100
115	110/115			ND		0.400
116	85/116/117			ND		0.120
117	85/116/117			ND		0.120
118				ND		0.256
119	86/87/97/108/119/125	35.679	1.49	(0.273)		0.240
120				ND		0.0100
121				ND		0.0100
122				ND		0.0100
123				ND		0.0100
124	107/124			ND		0.0200
125	86/87/97/108/119/125	35.679	1.49	(0.273)		0.240
126				ND		0.0100
127				ND		0.0100
128	128/166			ND		0.0200
129	129/138/163	43.259	1.07	0.0753		0.0600
130				ND		0.0100
131				ND		0.0100
132		39.955	1.29	0.0300		0.0100
133				ND		0.0100
134	134/143			ND		0.0200
135	135/151	37.691	1.30	0.0248		0.0200
136		34.941	1.43	0.0138		0.0100
137	100/100/100			ND		0.0100
138	129/138/163	43.259	1.07	(0.0753)		0.0600
139	139/140			NĎ		0.0200
140	139/140			ND		0.0200
141				ND		0.0200
142	404/440			ND		0.0100
143	134/143			ND		0.0200
144				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

414 Basement AQ02479 10220944002 P130306A 04

IUPAC Co-elutions RT Ratio ng/S ng/S	
101 AC CO CIGUICITO 1111/O 119/O 119/O	ng/S
145 ND	0.0400
ND	0.0100
147 147/149 38.631 1.14 0.0690	0.0200
ND	0.0100
149 147/149 38.631 1.14 (0.0690)	0.0200
ND	0.0100
151 135/151 37.691 1.30 (0.0248)	0.0200
152 ND	0.0100
153 153/168 41.934 1.21 0.0454	0.0400
154 ND	0.0100
155 ND	0.0100
156 156/157 ND	0.0200
157 156/157 ND	0.0200
158 ND	0.200
159 ND	0.0100
ND	0.0100
ND	0.0100
162 ND	0.0100
163 129/138/163 43.259 1.07 (0.0753)	0.0600
ND	0.0100
165 ND	0.0100
166 128/166 ND	0.0200
167 ND	0.0200
168 153/168 41.934 1.21 (0.0454)	0.0400
ND	0.0120
170 ND	0.0100
171 171/173 ND	0.0200
172 ND	0.0100
173 171/173 ND	0.0200
174 ND	0.0100
175 ND	0.0100
176 ND	0.0100
177 ND	0.0100
178 ND	0.0100
179 ND 180 180/193 ND	0.0100 0.0400
404 ND	0.0400
181 ND 182 ND	0.0100
400 400/40E	0.0200
183 183/185 ND 184 ND	0.0200
185 183/185 ND	0.0200
186 ND	0.0100
187 ND	0.0100
188 ND	0.0100
189 ND	0.0200
190 ND	0.0100
191 ND	0.0100
192 ND	0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Page 54 of 135

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Basement AQ02479 10220944002 P130306A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202				ND		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Basement AQ02479 10220944002 P130306A_04

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.0420	
Total Dichloro Biphenyls	4.47	
Total Trichloro Biphenyls	40.6	
Total Tetrachloro Biphenyls	52.1	
Total Pentachloro Biphenyls	2.11	
Total Hexachloro Biphenyls	0.258	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	99.6	

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 414 Living Room AQ02480

Lab Sample ID 10220944003 Filename P130306A_05

Injected By **CVS**

1.00 Sample **PUF Total Amount Extracted** Matrix % Moisture NA Dilution

Dry Weight Extracted NA Collected 02/21/2013 09:20 ICAL ID P130306A02 Received 02/23/2013 09:30 02/28/2013 12:30 P130306A 01 CCal Filename(s) Extracted Method Blank ID **BLANK-35566** Analyzed 03/06/2013 15:20

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-2,2',-DiCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4',5-TeCB 13C-3,4,4',5-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4'-5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-2,3',4,4',5,5'-HxCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157	8.515 11.882 12.229 20.462 16.699 29.090 20.807 36.720 37.340 27.648 41.130 40.442 39.889 39.536 44.450 34.188 47.653 46.445	2.96 3.44 1.62 1.62 1.05 1.11 0.79 0.77 1.60 1.53 1.59 1.60 1.62 1.65 1.28 1.29	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.587 0.807 0.773 0.903 0.909 1.13 1.000 1.14 1.25 1.12 1.28 1.30 1.26 1.25 1.14 1.45 3.00 1.52	29 40 39 45 45 56 50 57 63 56 64 65 63 62 57 72 75 76
13C-2,2',4,4',6,6'-HxCB 13C-HxCB (156/157) 13C-2,3',4,4',5,5'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB	155 156/157	34.188 47.653	1.28 1.29	2.0 4.0	1.45 3.00	72 75
13C-2,2',3',3',4,5,5',6,6'-NoCB 13CDeCB Cleanup Standards	208 209	53.382 58.491	0.82 0.72	2.0 2.0	1.41 1.51	71 75
13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.328 37.424 43.712	1.06 1.56 1.07	2.0 2.0 2.0	1.19 1.35 1.66	59 68 83
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.153 26.541 34.439 43.209 56.378	1.61 0.78 1.63 1.30 0.93	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

414 Living Room AQ02480 10220944003 P130306A 05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
					9. •	
1		8.539	3.05	0.143		0.0200
2		11.655	3.33	0.0765 B		0.0200
3		11.906	3.27	0.196		0.0200
4		12.253	1.40	0.361		0.100
5		16.136	1.36	0.0241		0.0200
6		15.741	1.52	0.121		0.0200
7		15.405	1.34	0.0381		0.0200
8		16.340	1.56	0.499		0.250
9		15.177	1.51	0.0468		0.0200
10		12.517	1.55	0.944		0.0200
11 12	12/13	19.695 20.090	1.57 1.48	1.75 B 0.0760		0.139 0.0100
12	12/13	20.090	1.48			0.0100
13	12/13	20.090	1.40	(0.0760)		0.0100
15		20.497	1.79	ND 0.203		0.0100
16		20.497	1.79	0.363		0.132
17		19.826	1.03	0.560		0.100
18	18/30	19.287	1.10	1.18		0.100
19	10/30	16.711	1.10	4.06		0.200
20	20/28	24.344	1.04	1.27		0.516
21	21/33	24.630	1.05	0.553		0.540
22	21/00	24.000	1.00	ND		0.380
23				ND		0.00500
24		20.270	1.10	0.153		0.0200
25		23.590	0.93	0.108		0.100
26	26/29	23.305	1.09	0.231		0.0400
27	20/20	20.114	1.01	0.600		0.0200
28	20/28	24.344	1.04	(1.27)		0.516
29	26/29	23.305	1.09	(0.231)		0.0400
30	18/30	19.287	1.10	(1.18)		0.200
31		23.993	1.08	1.10		0.520
32		21.108	1.05	1.65		0.100
33	21/33	24.630	1.05	(0.553)		0.540
34				` NĎ		0.00500
35				ND		0.0200
36				ND		0.0100
37				ND		0.212
38				ND		0.0100
39		27.464	0.83 I		0.0132	0.0100
40	40/41/71	28.923	0.78	0.639		0.120
41	40/41/71	28.923	0.78	(0.639)		0.120
42		28.336	0.81	0.405		0.200
43	43/73	26.843	0.72	0.0591		0.0200
44	44/47/65	27.715	0.79	1.49		0.600
45	45/51	24.395	0.75	0.984		0.0800
46		24.781	0.82	0.282		0.0100
47	44/47/65	27.715	0.79	(1.49)		0.600
48		27.480	0.80	0.360		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Living Room AQ02480 10220944003 P130306A 05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69	27.145	0.79	1.22		0.400
50	50/53	23.607	0.79	0.872		0.0200
51	45/51	24.395	0.75	(0.984)		0.0800
52		26.575	0.81	2.10		0.492
53	50/53	23.607	0.79	(0.872)		0.0200
54		20.840	0.70	Ò.041Ŕ		0.0100
55				ND		0.0100
56				ND		0.200
57				ND		0.0100
58				ND		0.0100
59	59/62/75	28.101	0.80	0.147		0.0300
60				ND		0.200
61	61/70/74/76	32.125	0.76	1.09		0.800
62	59/62/75	28.101	0.80	(0.147)		0.0300
63		31.756	0.83	0.0207		0.0100
64		29.191	0.82	0.499		0.200
65	44/47/65	27.715	0.79	(1.49)		0.600
66		32.494	0.77	0.418		0.336
67		31.488	0.77	0.0129		0.0100
68				ND		0.0100
69	49/69	27.145	0.79	(1.22)		0.400
70	61/70/74/76	32.125	0.76	(1.09)		0.800
71	40/41/71	28.923	0.78	(0.639)		0.120
72				ND		0.0100
73	43/73	26.843	0.72	(0.0591)		0.0200
74	61/70/74/76	32.125	0.76	(1.09)		0.800
75	59/62/75	28.101	0.80	(0.147)		0.0300
76	61/70/74/76	32.125	0.76	(1.09)		0.800
77				ND		0.0400
78 70				ND 0.0000		0.0100
79		35.730	0.83	0.0263		0.0100
80				ND		0.0100
81		20.020	 1	ND 0.0000		0.0120
82 83		36.938	1.57 1.58	0.0906 0.0292		0.0400 0.0100
83 84		34.942 32.326	1.58			
84 85	85/116/117	32.326 36.435	1.50	0.244 0.135		0.0400 0.120
86	86/87/97/108/119/125	35.747	1.61	0.135		0.120
87	86/87/97/108/119/125	35.747 35.747	1.61	(0.572)		0.240
88	88/91	32.092	1.50	0.128		0.0200
89	00/91	32.846	1.61	0.128		0.0200
90	90/101/113	34.473	1.59	0.788		0.120
91	88/91	32.092	1.50	(0.128)		0.0200
92	00/01	33.819	1.58	0.131		0.0100
93	93/98/100/102	31.538	1.40	0.0423		0.0400
94	55/55/100/102		1.40	0.0423 ND		0.0200
95		31.119	1.65	0.617		0.0760
96		28.051	1.19 I		0.0115	0.0100
00		20.001	1.101		3.0110	0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

414 Living Room AQ02480 Client Sample ID Lab Sample ID

10220944003 P130306A 05 Filename

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
97	86/87/97/108/119/125	35.747	1.61	(0.572)		0.240
98	93/98/100/102	31.538	1.40	(0.0423)		0.0400
99	30/30/100/102	35.110	1.70	0.425		0.200
100	93/98/100/102	31.538	1.40	(0.0423)		0.0400
101	90/101/113	34.473	1.59	(0.788)		0.120
102	93/98/100/102	31.538	1.40	(0.0423)		0.0400
102	93/90/100/102		1.40	(0.0423) ND		0.0100
103				ND ND		0.0100
105		41.146	1.50	0.236		0.200
105		41.140	1.50	0.230 ND		0.0100
100	107/124	39.168	1.75	0.0239		0.0200
107	86/87/97/108/119/125	35.747	1.61	(0.572)		0.240
108	00/07/97/100/119/125	39.436	1.49	0.0352		0.240
110	110/115	39.436 36.619	1.49	0.0352		0.400
	110/115					
111				ND		0.0100
112	00/404/440			ND (0.700)		0.0100
113	90/101/113	34.473	1.59	(0.788)		0.120
114	440/445	40.476	1.18	(0.044)	0.0137	0.0100
115	110/115	36.619	1.64	(0.941)		0.400
116	85/116/117	36.435	1.59	(0.135)		0.120
117	85/116/117	36.435	1.59	(0.135)		0.120
118	00/07/07/400/440/405	39.905	1.52	0.648		0.256
119	86/87/97/108/119/125	35.747	1.61	(0.572)		0.240
120				NĎ		0.0100
121				ND		0.0100
122				ND		0.0100
123	4074404	39.553	1.54	0.0129 J		0.0100
124	107/124	39.168	1.75	(0.0239)		0.0200
125	86/87/97/108/119/125	35.747	1.61	(0.572)		0.240
126				ND		0.0100
127				ND		0.0100
128	128/166	44.567	1.36	0.0575		0.0200
129	129/138/163	43.259	1.28	0.439		0.0600
130		42.555	1.16	0.0237		0.0100
131				ND		0.0100
132		39.972	1.27	0.172		0.0100
133				ND		0.0100
134	134/143	38.832	1.32	0.0223		0.0200
135	135/151	37.675	1.29	0.109		0.0200
136		34.925	1.32	0.0613		0.0100
137		42.790	1.19	0.0283		0.0100
138	129/138/163	43.259	1.28	(0.439)		0.0600
139	139/140			NĎ		0.0200
140	139/140			ND		0.0200
141		42.136	1.41	0.0622		0.0200
142				ND		0.0100
143	134/143	38.832	1.32	(0.0223)		0.0200
144		38.262	1.27	0.0182		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Tel: 612-607-1700

Fax: 612- 607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

414 Living Room AQ02480 10220944003 P130306A 05

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146		41.264	1.12	0.0509		0.0100
147	147/149	38.648	1.28	0.310		0.0200
148				ND		0.0100
149	147/149	38.648	1.28	(0.310)		0.0200
150				ND		0.0100
151	135/151	37.675	1.29	(0.109)		0.0200
152				NĎ		0.0100
153	153/168	41.935	1.10	0.291		0.0400
154				ND		0.0100
155	450/457	47.000		ND		0.0100
156	156/157	47.636	1.30	0.0402		0.0200
157	156/157	47.636	1.30	(0.0402)		0.0200
158				ND		0.200
159 160				ND ND		0.0100 0.0100
161				ND		0.0100
162				ND ND		0.0100
163	129/138/163	43.259	1.28	(0.439)		0.0600
164	123/130/103	42.907	1.54 I	(0.439)	0.0175	0.0100
165		4 2.301	1.541	ND	0.0173	0.0100
166	128/166	44.567	1.36	(0.0575)		0.0200
167	120/100			ND		0.0200
168	153/168	41.935	1.10	(0.291)		0.0400
169				ND		0.0120
170		50.453	1.09	0.0131		0.0100
171	171/173			ND		0.0200
172				ND		0.0100
173	171/173			ND		0.0200
174		45.607	1.01	0.0220		0.0100
175				ND		0.0100
176				ND		0.0100
177		46.026	1.10	0.0116		0.0100
178				ND		0.0100
179		40.778	1.04	0.0108		0.0100
180	180/193			ND		0.0400
181				ND		0.0100
182	400/405			ND		0.0100
183	183/185			ND		0.0200
184 185	183/185			ND ND		0.0100 0.0200
186	103/103			ND		0.0200
187		44.701	1.10	0.0235		0.0100
188		44.701	1.10	0.0233 ND		0.0100
189				ND		0.0200
190				ND		0.0100
191				ND		0.0100
192				ND		0.0100
-						

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Living Room AQ02480 10220944003 P130306A 05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202				ND		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 414 Living Room AQ02480 10220944003 P130306A_05

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.415	
Total Dichloro Biphenyls	4.07	
Total Trichloro Biphenyls	11.8	
Total Tetrachloro Biphenyls	10.7	
Total Pentachloro Biphenyls	5.11	
Total Hexachloro Biphenyls	1.69	
Total Heptachloro Biphenyls	0.0809	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	33.9	

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 418 Kitchen AQ02481 10220944004 Lab Sample ID P130306A_06 Filename Injected By **CVS**

1.00 Sample **PUF Total Amount Extracted** Matrix % Moisture NA Dilution

Dry Weight Extracted NA Collected 02/21/2013 10:28 ICAL ID P130306A02 Received 02/23/2013 09:30 02/28/2013 12:30 CCal Filename(s) P130306A 01 Extracted Method Blank ID **BLANK-35566** Analyzed 03/06/2013 16:22

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.635	3.18	2.0	0.186	9
13C-4-MoCB	3	12.265	2.96	2.0	0.503	25
13C-2,2'-DiCB	4	12.601	1.64	2.0	0.622	31
13C-4,4'-DiCB	15	20.569	1.60	2.0	0.968	48
13C-2,2',6-TrCB	19	16.854	1.07	2.0	0.835	42
13C-3,4,4'-TrCB	37	29.124	1.07	2.0	1.30	65
13C-2,2',6,6'-TeCB	54	20.924	0.81	2.0	0.992	50
13C-3,4,4',5-TeCB	81	36.755	0.80	2.0	1.40	70
13C-3,3',4,4'-TeCB	77	37.358	0.80	2.0	1.50	75
13C-2,2',4,6,6'-PeCB	104	27.682	1.62	2.0	1.20	60 75
13C-2,3,3',4,4'-PeCB	105	41.148 40.461	1.58 1.58	2.0 2.0	1.50 1.52	75 76
13C-2,3,4,4',5-PeCB 13C-2,3',4,4',5-PeCB	114 118	39.908	1.50	2.0	1.52	76 76
13C-2,3',4,4',5'-PeCB	123	39.555	1.59	2.0	1.50	76 75
13C-2,3,4,4,5-PeCB 13C-3,3',4,4',5-PeCB	126	44.469	1.59	2.0	1.40	73 70
13C-2,2',4,4',6,6'-HxCB	155	34.222	1.28	2.0	1.60	80
13C-HxCB (156/157)	156/157	47.672	1.28	4.0	3.56	89
13C-2,3',4,4',5,5'-HxCB	167	46.465	1.28	2.0	1.78	89
13C-3,3',4,4',5,5'-HxCB	169	51.093	1.29	2.0	1.79	89
13C-2,2',3,4',5,6,6'-HpCB	188	40.461	1.09	2.0	1.30	65
13C-2,3,3',4,4',5,5'-HpCB	189	54.011	1.06	2.0	1.37	68
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.197	0.90	2.0	1.41	70
13C-2,3,3',4,4',5,5',6-OcCB	205	56.662	0.91	2.0	1.66	83
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.589	0.78	2.0	1.90	95
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	53.386	0.81	2.0	1.38	69
13CDeCB	209	58.494	0.71	2.0	1.65	83
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.378	1.07	2.0	1.29	65
13C-2,3,3',5,5'-PeCB	111	37.459	1.61	2.0	1.50	75
13C-2,2',3,3',5,5',6-HpCB	178	43.731	1.06	2.0	1.87	94
Recovery Standards						
13C-2,5-DiCB	9	15.381	1.58	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.592	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.473	1.61	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.245	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	56.382	0.92	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Kitchen AQ02481 10220944004 P130306A 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1		8.767	3.84 I		0.0832	0.0200
2		12.097	3.23	0.0574 B		0.0200
3		12.277	3.28	0.170		0.0200
4		12.613	1.56	2.03		0.100
5		16.315	1.63	0.0981		0.0200
6		15.932	1.57	0.621		0.0200
7		15.608	1.58	0.149		0.0200
8		16.507	1.58	2.78		0.250
9		15.393	1.53	0.246		0.0200
10		12.852	1.60	0.641		0.0200
11		19.826	1.58	1.75 B		0.139
12	12/13	20.174	1.59	0.215		0.0100
13	12/13	20.174	1.59	(0.215)		0.0100
14				ND		0.0100
15		20.593	1.61	1.28		0.132
16		20.497	1.10	1.62		0.100
17	40/00	19.946	1.06	2.40		0.100
18	18/30	19.407	1.06	3.95		0.200
19	00/00	16.878	1.06	7.79		0.0264
20	20/28	24.412	1.05	6.47		0.516
21	21/33	24.680	1.06	2.31		0.540
22 23		25.150	1.03 0.90	1.97 0.00895		0.380 0.00500
23 24		23.020 20.378	0.90	0.00695		0.0200
2 4 25		23.657	1.03	0.535		0.100
26	26/29	23.372	1.03	1.13		0.0400
27	20/29	20.222	1.06	1.80		0.0200
28	20/28	24.412	1.05	(6.47)		0.516
29	26/29	23.372	1.03	(1.13)		0.0400
30	18/30	19.407	1.06	(3.95)		0.200
31	10/00	24.043	1.07	4.83		0.520
32		21.209	1.05	5.86		0.100
33	21/33	24.680	1.06	(2.31)		0.540
34		22.819	1.05	0.0274		0.00500
35		28.688	1.09	0.0416		0.0200
36				ND		0.0100
37		29.141	1.05	0.478		0.212
38		28.168	1.16	0.0119		0.0100
39		27.531	1.11	0.0458		0.0100
40	40/41/71	28.956	0.81	2.64		0.120
41	40/41/71	28.956	0.81	(2.64)		0.120
42		28.386	0.80	1.74		0.200
43	43/73	26.894	0.85	0.237		0.0200
44	44/47/65	27.749	0.79	6.21		0.600
45	45/51	24.462	0.79	3.58		0.0800
46	44/47/05	24.848	0.80	1.09		0.0100
47	44/47/65	27.749	0.79	(6.21)		0.600
48		27.531	0.80	1.23		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Page 65 of 135

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Kitchen AQ02481 10220944004 P130306A 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69	27.196	0.79	4.78		0.400
50	50/53	23.674	0.79	2.88		0.0200
51	45/51	24.462	0.79	(3.58)		0.0800
52		26.625	0.81	7.41		0.492
53	50/53	23.674	0.79	(2.88)		0.0200
54		20.957	0.81	Ò.14Í		0.0100
55				ND		0.0100
56		33.250	0.77	0.374		0.200
57		31.019	0.78	0.0106		0.0100
58				ND		0.0100
59	59/62/75	28.152	0.80	0.691		0.0300
60				ND		0.200
61	61/70/74/76	32.159	0.78	2.69		0.800
62	59/62/75	28.152	0.80	(0.691)		0.0300
63		31.790	0.78	0.0552		0.0100
64		29.208	0.80	2.28		0.200
65	44/47/65	27.749	0.79	(6.21)		0.600
66		32.528	0.77	0.916		0.336
67		31.505	0.78	0.0545		0.0100
68		30.583	0.67	0.0108		0.0100
69	49/69	27.196	0.79	(4.78)		0.400
70	61/70/74/76	32.159	0.78	(2.69)		0.800
71	40/41/71	28.956	0.81	(2.64)		0.120
72	10/70	30.248	0.70	0.0153		0.0100
73	43/73	26.894	0.85	(0.237)		0.0200
74	61/70/74/76	32.159	0.78	(2.69)		0.800
75 70	59/62/75	28.152	0.80	(0.691)		0.0300
76 77	61/70/74/76	32.159	0.78	(2.69)		0.800
77				NĎ		0.0400
78 70		 25 649		ND 0.0150		0.0100
79 80		35.648	0.73			0.0100 0.0100
81				ND ND		0.0100
82		36.972	1.65	0.186		0.0400
83		34.977	1.61	0.0826		0.0400
84		32.344	1.58	0.572		0.0400
85	85/116/117	36.452	1.57	0.372		0.120
86	86/87/97/108/119/125	35.765	1.53	1.30		0.240
87	86/87/97/108/119/125	35.765	1.53	(1.30)		0.240
88	88/91	32.126	1.66	0.280		0.0200
89	00/31	32.897	1.66	0.0236		0.0100
90	90/101/113	34.490	1.57	1.77		0.120
91	88/91	32.126	1.66	(0.280)		0.0200
92	55.51	33.836	1.60	0.278		0.0100
93	93/98/100/102	31.572	1.58	0.114		0.0400
94	55,55,155,152			ND		0.0200
95		31.153	1.57	1.44		0.0760
96		28.101	1.56	0.0524		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID 418 Kitchen AQ02481 Lab Sample ID 10220944004 Filename P130306A 06

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
97	86/87/97/108/119/125	35.765	1.53	(1.30)		0.240
98	93/98/100/102	31.572	1.58	(0.114)		0.0400
99	33/30/100/102	35.145	1.59	0.838		0.200
100	93/98/100/102	31.572	1.58	(0.114)		0.0400
101	90/101/113	34.490	1.57	(1.77)		0.120
102	93/98/100/102	31.572	1.58	(0.114)		0.0400
103	93/90/100/102	30.432	1.65	0.0143		0.0100
103			1.05	0.0143 ND		0.0100
105		41.182	1.56	0.290		0.200
106		41.102	1.50	0.290 ND		0.200
107	107/124	39.186	1.60	0.0490		0.0200
107	86/87/97/108/119/125		1.53			0.0200
108	00/07/97/100/119/125	35.765 39.454	1.53	(1.30) 0.0663		0.240
110	110/115					
	110/115	36.654	1.61	2.10		0.400
111				ND ND		0.0100
112	00/404/440			ND		0.0100
113	90/101/113	34.490	1.57	(1.77)		0.120
114	440/445	40.478	1.57	0.0301		0.0100
115	110/115	36.654	1.61	(2.10)		0.400
116	85/116/117	36.452	1.57	(0.309)		0.120
117	85/116/117	36.452	1.57	(0.309)		0.120
118	00/07/07/400/440/405	39.941	1.55	1.12		0.256
119	86/87/97/108/119/125	35.765	1.53	(1.30)		0.240
120				NĎ		0.0100
121				ND		0.0100
122				ND		0.0100
123		39.572	1.58	0.0189 J		0.0100
124	107/124	39.186	1.60	(0.0490)		0.0200
125	86/87/97/108/119/125	35.765	1.53	(1.30)		0.240
126				NĎ		0.0100
127				ND		0.0100
128	128/166	44.586	1.28	0.0416		0.0200
129	129/138/163	43.278	1.24	0.484		0.0600
130		42.574	1.25	0.0312		0.0100
131		39.522	1.27	0.0246		0.0100
132		40.008	1.24	0.325		0.0100
133				ND		0.0100
134	134/143	38.868	1.35	0.0713		0.0200
135	135/151	37.677	1.25	0.296		0.0200
136		34.977	1.28	0.156		0.0100
137		42.826	1.14	0.0387		0.0100
138	129/138/163	43.278	1.24	(0.484)		0.0600
139	139/140	39.337	1.14	0.0265		0.0200
140	139/140	39.337	1.14	(0.0265)		0.0200
141		42.138	1.22	0.102		0.0200
142				ND		0.0100
143	134/143	38.868	1.35	(0.0713)		0.0200
144		38.298	1.33	0.0506		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Tel: 612-607-1700

Fax: 612- 607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Kitchen AQ02481 10220944004 P130306A 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146		41.299	1.22	0.0925		0.0100
147	147/149	38.683	1.25	0.800		0.0200
148				ND		0.0100
149	147/149	38.683	1.25	(0.800)		0.0200
150				ND		0.0100
151	135/151	37.677	1.25	(0.296)		0.0200
152				ND		0.0100
153	153/168	41.970	1.25	0.467		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157			ND		0.0200
157	156/157			ND		0.0200
158				ND		0.200
159				ND ND		0.0100
160 161				ND ND		0.0100
162				ND ND		0.0100 0.0100
163	129/138/163	43.278	1.24	(0.484)		0.0600
164	129/130/103	42.926	1.43	0.0272		0.0100
165		42.920	1.43	0.0272 ND		0.0100
166	128/166	44.586	1.28	(0.0416)		0.0200
167	120/100		1.20	ND		0.0200
168	153/168	41.970	1.25	(0.467)		0.0400
169	100/100	41.57 U		ND		0.0120
170				ND		0.0100
171	171/173			ND		0.0200
172				ND		0.0100
173	171/173			ND		0.0200
174		45.610	1.03	0.0296		0.0100
175				ND		0.0100
176		41.769	1.17	0.0119		0.0100
177		46.062	1.04	0.0136		0.0100
178		43.765	1.16	0.0106		0.0100
179		40.830	0.98	0.0392		0.0100
180	180/193			ND		0.0400
181				ND		0.0100
182				ND		0.0100
183	183/185	45.391	1.07	0.0352		0.0200
184	400/405	45.004	4.07	ND		0.0100
185	183/185	45.391	1.07	(0.0352)		0.0200
186		44.707	1.00	ND 0.0070		0.0100
187		44.737	1.00	0.0672		0.0100
188				ND ND		0.0100
189				ND ND		0.0200
190 191				ND ND		0.0100 0.0100
191				ND ND		0.0100
132				שווו		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

4

Pace Analytical Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Kitchen AQ02481 10220944004 P130306A 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202		46.213	0.95	0.0266		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Kitchen AQ02481 10220944004 P130306A_06

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.227	
Total Dichloro Biphenyls	9.81	
Total Trichloro Biphenyls	41.7	
Total Tetrachloro Biphenyls	39.1	
Total Pentachloro Biphenyls	10.9	
Total Hexachloro Biphenyls	3.03	
Total Heptachloro Biphenyls	0.208	
Total Octachloro Biphenyls	0.0266	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	105	

ND = Not Detected

ng's Found 0/ Books

Tel: 612-607-1700

Fax: 612-607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 418 Outdoor AQ02482

 Lab Sample ID
 10220944005

 Filename
 P130306A_07

Injected By CVS

DCD loomer

Total Amount Extracted1.00 SampleMatrixPUF% MoistureNADilution3

HIDAC

Dry Weight Extracted NA Collected 02/21/2013 10:34 ICAL ID P130306A02 Received 02/23/2013 09:30 02/28/2013 12:30 P130306A 01 CCal Filename(s) Extracted Method Blank ID **BLANK-35566** Analyzed 03/06/2013 17:24

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.719	3.60	2.0	0.218	11
13C-4-MoCB	3 4	12.073	3.45	2.0	0.540	27
13C-2,2'-DiCB	4	12.421	1.56	2.0	0.623	31
13C-4,4'-DiCB	15	20.497	1.56	2.0	0.723	36
13C-2,2',6-TrCB	19	16.770	1.04	2.0	0.701	35
13C-3,4,4'-TrCB	37	29.090	1.05	2.0	0.912	46
13C-2,2',6,6'-TeCB	54	20.839	0.80	2.0	0.802	40
13C-3,4,4',5-TeCB	<u>81</u>	36.737	0.78	2.0	1.06	53
13C-3,3',4,4'-TeCB	77	37.341	0.78	2.0	1.16	58
13C-2,2',4,6,6'-PeCB	104	27.648	1.60	2.0	0.860	43
13C-2,3,3',4,4'-PeCB	105	41.131	1.61	2.0	1.23	61
13C-2,3,4,4',5-PeCB	114	40.444	1.61	2.0	1.23	61
13C-2,3',4,4',5-PeCB	118 123	39.890	1.62 1.59	2.0 2.0	1.21 1.17	61 59
13C-2,3',4,4',5'-PeCB	126	39.538 44.452	1.61	2.0	1.17	59 55
13C-3,3',4,4',5-PeCB	155	34.205	1.26	2.0	1.17	58
13C-2,2',4,4',6,6'-HxCB 13C-HxCB (156/157)	156/157	47.655	1.29	4.0	2.91	73
13C-2,3',4,4',5,5'-HxCB	167	46.447	1.30	2.0	1.43	73 72
13C-3,3',4,4',5,5'-HxCB	169	51.093	1.26	2.0	1.48	74
13C-2,2',3,4',5,6,6'-HpCB	188	40.444	1.05	2.0	1.00	50
13C-2,3,3',4,4',5,5'-HpCB	189	53.989	1.06	2.0	1.09	54
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.179	0.91	2.0	1.10	55
13C-2,3,3',4,4',5,5',6-OcCB	205	56.640	0.90	2.0	1.38	69
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.589	0.78	2.0	1.56	78
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	53.385	0.81	2.0	1.13	56
13CDeCB	209	58.472	0.72	2.0	1.33	67
Cleanup Standards	00	04.007	4.05	0.0	0.000	47
13C-2,4,4'-TrCB	28	24.327	1.05	2.0	0.933	47
13C-2,3,3',5,5'-PeCB	111	37.425	1.62	2.0	1.17	58 71
13C-2,2',3,3',5,5',6-HpCB	178	43.714	1.06	2.0	1.43	/1
Recovery Standards						
13C-2,5-DiCB	9	15.260	1.61	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.558	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.440	1.62	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.228	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	56.381	0.92	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Outdoor AQ02482 10220944005 P130306A 07

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1				ND		0.0200
2		11.882	3.45	0.0211 B		0.0200
3				ND		0.0200
4				ND		0.100
5				ND		0.0200
6				ND		0.0200
7		15.512	1.42	0.0441		0.0200
8				ND		0.250
9				ND		0.0200
10		12.684	1.50	0.155		0.0200
11				ND		0.139
12	12/13	20.113	1.36	0.0144		0.0100
13	12/13	20.113	1.36	(0.0144)		0.0100
14				ND		0.0100
15				ND		0.132
16				ND		0.100
17				ND		0.100
18	18/30			ND		0.200
19		16.794	1.07	0.554		0.0264
20	20/28			ND		0.516
21	21/33			ND		0.540
22				ND		0.380
23				ND		0.00500
24		20.305	1.16	0.0273		0.0200
25	00/00			ND		0.100
26	26/29		4.05	ND		0.0400
27	20/20	20.149	1.05	0.0959		0.0200
28	20/28			ND ND		0.516
29 30	26/29 18/30			ND ND		0.0400 0.200
31	10/30			ND ND		0.200
32		 21.124	1.04	0.306		0.100
33	21/33	Z1.12 4 	1.04	0.300 ND		0.540
33 34	21/33			ND ND		0.00500
35				ND ND		0.0200
36				ND		0.0100
37				ND		0.212
38				ND		0.0100
39				ND		0.0100
40	40/41/71			ND		0.120
41	40/41/71			ND		0.120
42				ND		0.200
43	43/73			ND		0.0200
44	44/47/65			ND		0.600
45	45/51	24.428	0.76	0.104		0.0800
46		24.814	0.86	0.0290		0.0100
47	44/47/65			ND		0.600
48				ND		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Outdoor AQ02482 10220944005 P130306A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69			ND		0.400
50	50/53	23.623	0.76	0.0803		0.0200
51	45/51	24.428	0.76	(0.104)		0.0800
52				NĎ		0.492
53	50/53	23.623	0.76	(0.0803)		0.0200
54				` NĎ		0.0100
55				ND		0.0100
56				ND		0.200
57				ND		0.0100
58				ND		0.0100
59	59/62/75			ND		0.0300
60				ND		0.200
61	61/70/74/76			ND		0.800
62	59/62/75			ND		0.0300
63				ND		0.0100
64				ND		0.200
65	44/47/65			ND		0.600
66				ND		0.336
67				ND		0.0100
68				ND		0.0100
69	49/69			ND		0.400
70	61/70/74/76			ND		0.800
71	40/41/71			ND		0.120
72				ND		0.0100
73	43/73			ND		0.0200
74	61/70/74/76			ND		0.800
75	59/62/75			ND		0.0300
76	61/70/74/76			ND		0.800
77				ND		0.0400
78				ND		0.0100
79				ND		0.0100
80				ND		0.0100
81				ND		0.0120
82				ND		0.0400
83				ND		0.0100
84	05/440/445			ND		0.0400
85	85/116/117			ND		0.120
86	86/87/97/108/119/125			ND		0.240
87	86/87/97/108/119/125			ND		0.240
88	88/91			ND		0.0200
89	00/404/440			ND		0.0100
90	90/101/113			ND		0.120
91	88/91			ND		0.0200
92	00/00/400/400			ND		0.0100
93	93/98/100/102			ND		0.0400
94				ND ND		0.0200
95				ND		0.0760
96				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Outdoor AQ02482 10220944005 P130306A 07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/S	ng/S	ng/S
97	86/87/97/108/119/125			ND		0.240
98	93/98/100/102			ND		0.0400
99				ND		0.200
100	93/98/100/102			ND		0.0400
101	90/101/113			ND		0.120
102	93/98/100/102			ND		0.0400
103				ND		0.0100
104				ND		0.0100
105				ND		0.200
106				ND		0.0100
107	107/124			ND		0.0200
108	86/87/97/108/119/125			ND		0.240
109				ND		0.0100
110	110/115			ND		0.400
111				ND		0.0100
112				ND		0.0100
113	90/101/113			ND		0.120
114				ND		0.0100
115	110/115			ND		0.400
116	85/116/117			ND		0.120
117	85/116/117			ND		0.120
118				ND		0.256
119	86/87/97/108/119/125			ND		0.240
120				ND		0.0100
121				ND		0.0100
122 123				ND ND		0.0100
123	107/124			ND ND		0.0100 0.0200
124	86/87/97/108/119/125			ND ND		0.0200
125	00/07/97/100/119/125			ND ND		0.240
127				ND ND		0.0100
127	128/166			ND ND		0.0200
129	129/138/163			ND ND		0.0600
130	129/130/103			ND		0.0100
131				ND		0.0100
132				ND		0.0100
133				ND		0.0100
134	134/143			ND		0.0200
135	135/151			ND		0.0200
136	100, 101			ND		0.0100
137				ND		0.0100
138	129/138/163			ND		0.0600
139	139/140			ND		0.0200
140	139/140			ND		0.0200
141				ND		0.0200
142				ND		0.0100
143	134/143			ND		0.0200
144				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Outdoor AQ02482 10220944005 P130306A 07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/S	ng/S	ng/S
145				ND		0.0400
146				ND		0.0100
147	147/149			ND		0.0200
148				ND		0.0100
149	147/149			ND		0.0200
150				ND		0.0100
151	135/151			ND		0.0200
152				ND		0.0100
153	153/168			ND		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157			ND		0.0200
157	156/157			ND		0.0200
158				ND		0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162				ND		0.0100
163	129/138/163			ND		0.0600
164				ND		0.0100
165				ND		0.0100
166	128/166			ND		0.0200
167				ND		0.0200
168	153/168			ND		0.0400
169				ND		0.0120
170				ND		0.0100
171	171/173			ND		0.0200
172				ND		0.0100
173	171/173			ND		0.0200
174				ND		0.0100
175				ND		0.0100
176				ND		0.0100
177				ND		0.0100
178				ND		0.0100
179	100/100			ND		0.0100
180	180/193			ND		0.0400
181				ND		0.0100
182	400/405			ND		0.0100
183	183/185			ND		0.0200
184	400/405			ND		0.0100
185	183/185			ND ND		0.0200
186				ND ND		0.0100
187				ND ND		0.0100
188				ND ND		0.0100
189				ND ND		0.0200
190				ND ND		0.0100
191 192				ND ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

418 Outdoor AQ02482 10220944005 P130306A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202				ND		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

HRS Reference #69

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Outdoor AQ02482 10220944005 P130306A_07

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.0211	
Total Dichloro Biphenyls	0.213	
Total Trichloro Biphenyls	0.983	
Total Tetrachloro Biphenyls	0.213	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	1.43	

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 418 Basement AQ02483

 Lab Sample ID
 10220944006

 Filename
 P130306A_08

Injected By CVS

Total Amount Extracted1.00 SampleMatrixPUF% MoistureNADilution3

Dry Weight Extracted NA Collected 02/21/2013 10:42 ICAL ID P130306A02 Received 02/23/2013 09:30 CCal Filename(s) P130306A 01 02/28/2013 12:30 Extracted Method Blank ID **BLANK-35566** Analyzed 03/06/2013 18:27

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
PCB Isomer Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-2,2',6,6'-TeCB 13C-3,3',4,4'-TeCB 13C-2,3',4,4'-FeCB 13C-2,3',4,4'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-3,3',4,4',5-PeCB 13C-3,3',4,4',5-PeCB 13C-3,3',4,4',5-PeCB 13C-3,3',4,4',5-PeCB 13C-3,3',4,4',5-PeCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157	8.791 12.145 12.493 20.519 16.793 29.104 20.854 36.733 37.337 27.662 41.126 40.456 39.903 39.534 44.463 34.201 47.666	4.93 3.44 1.61 1.63 1.05 1.08 0.81 0.79 0.79 1.60 1.61 1.62 1.59 1.57 1.60 1.27	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.158 0.593 0.692 0.820 0.770 1.02 0.872 1.14 1.27 0.934 1.32 1.29 1.27 1.25 1.25 1.22 1.21 3.07	11 I 30 35 41 39 51 44 57 63 47 66 64 64 63 61 60 77
13C-HXCB (156/157) 13C-2,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6'-HpCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB	156/15/ 167 169 188 189 202 205 206 208 209	47.666 46.458 51.086 40.456 53.999 46.190 56.650 57.598 53.396 58.482	1.26 1.28 1.26 1.05 1.06 0.90 0.91 0.80 0.80 0.72	4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	3.07 1.53 1.58 0.979 1.17 1.15 1.44 1.62 1.20 1.46	77 77 79 49 59 58 72 81 60 73
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.342 37.438 43.725	1.07 1.61 1.05	2.0 2.0 2.0	1.06 1.23 1.53	53 62 76
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.284 26.572 34.453 43.222 56.391	1.60 0.79 1.58 1.28 0.92	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Page 78 of 135

Tel: 612-607-1700

Fax: 612-607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

418 Basement AQ02483 10220944006 P130306A 08

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1				ND		0.0200
2		11.965	3.11	0.0281 B		0.0200
3				ND		0.0200
4		12.505	1.52	0.304		0.100
5				ND		0.0200
6		15.847	1.46	0.0428		0.0200
7				ND		0.0200
8				ND		0.250
9				ND		0.0200
10		12.744	1.59	0.817		0.0200
11		19.752	1.54	0.160 B		0.139
12	12/13	20.160	1.55	0.0633		0.0100
13	12/13	20.160	1.55	(0.0633)		0.0100
14				ND		0.0100
15		20.531	1.58	0.366		0.132
16		20.447	1.05	0.247		0.100
17		19.884	1.09	0.812		0.100
18	18/30	19.345	1.05	0.799		0.200
19	00/00	16.817	1.07	8.14		0.0264
20	20/28	24.376	1.06	2.80		0.516
21	21/33			ND		0.540
22		25.114	1.03	0.783		0.380
23			4.00	ND		0.00500
24		20.327	1.02	0.463		0.0200
25	00/00	23.621	1.07	0.314		0.100
26	26/29	23.336	1.06	0.366		0.0400
27 28	20/28	20.160 24.376	1.07 1.06	2.01		0.0200 0.516
20 29	26/29	23.336	1.06	(2.80) (0.366)		0.0400
30	18/30	23.336 19.345	1.05	(0.366)		0.200
31	16/30	24.007	1.05	1.14		0.520
32		21.140	1.03	6.20		0.100
33	21/33	21.140	1.03	ND		0.540
34	21/00	22.766	0.91	0.0159		0.00500
35		22.700		ND		0.0200
36				ND		0.0100
37				ND		0.212
38		28.132	1.11	0.0195		0.0100
39		27.511	0.96	0.0417		0.0100
40	40/41/71	28.937	0.79	3.60		0.120
41	40/41/71	28.937	0.79	(3.60)		0.120
42		28.366	0.78	2.45		0.200
43	43/73	26.857	0.83	0.268		0.0200
44	44/47/65	27.729	0.80	7.82		0.600
45	45/51	24.426	0.81	4.57		0.0800
46	- - -	24.812	0.80	1.42		0.0100
47	44/47/65	27.729	0.80	(7.82)		0.600
48		27.494	0.79	`1.04		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

418 Basement AQ02483 10220944006 P130306A 08

50 50/53 23.638 0.79 3.72 0.02 51 45/51 24.426 0.81 (4.57) 0.08 52 26.589 0.80 8.51 0.4 53 50/53 23.638 0.79 (3.72) 0.02 54 20.871 0.80 0.167 0.07 55 ND 0.2 57 31.015 0.85 0.0119 0.07 58 ND 0.07 59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	ML /S
50 50/53 23.638 0.79 3.72 0.02 51 45/51 24.426 0.81 (4.57) 0.08 52 26.589 0.80 8.51 0.4 53 50/53 23.638 0.79 (3.72) 0.02 54 20.871 0.80 0.167 0.07 55 ND 0.2 57 31.015 0.85 0.0119 0.07 58 ND 0.07 59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	
51 45/51 24.426 0.81 (4.57) 0.08 52 26.589 0.80 8.51 0.4 53 50/53 23.638 0.79 (3.72) 0.02 54 20.871 0.80 0.167 0.07 55 ND 0.07 56 ND 0.2 57 31.015 0.85 0.0119 0.07 58 ND 0.07 59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	400
52 26.589 0.80 8.51 0.4 53 50/53 23.638 0.79 (3.72) 0.02 54 20.871 0.80 0.167 0.07 55 ND 0.07 56 ND 0.07 57 31.015 0.85 0.0119 0.07 58 ND 0.07 59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	
53 50/53 23.638 0.79 (3.72) 0.02 54 20.871 0.80 0.167 0.07 55 ND 0.07 56 ND 0.2 57 31.015 0.85 0.0119 0.07 58 ND 0.07 59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	
54 20.871 0.80 0.167 0.07 55 ND 0.07 56 ND 0.2 57 31.015 0.85 0.0119 0.07 58 ND 0.07 59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	192
55 ND 0.0° 56 ND 0.2° 57 31.015 0.85 0.0119 0.0° 58 ND 0.0° 59 59/62/75 28.115 0.80 0.920 0.0° 60 ND 0.2°	
56 ND 0.2 57 31.015 0.85 0.0119 0.0° 58 ND 0.0° 59 59/62/75 28.115 0.80 0.920 0.0° 60 ND 0.2°	
57 31.015 0.85 0.0119 0.07 58 ND 0.07 59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	100
58 ND 0.0° 59 59/62/75 28.115 0.80 0.920 0.0° 60 ND 0.2°	200
59 59/62/75 28.115 0.80 0.920 0.03 60 ND 0.2	100
60 ND 0.2	100
	300
C4 C4/70/74/7C ND 0.0	200
	300
62 59/62/75 28.115 0.80 (0.920) 0.03	
63 31.770 0.79 0.0451 0.0 ^o	100
	200
	300
66 32.508 0.78 0.524 0.3	336
67 31.468 0.73 0.0444 0.0°	
68 30.546 0.68 0.0108 0.0 ⁻	100
69 49/69 27.176 0.79 (6.35) 0.4	100
	300
	120
72 30.211 0.69 0.0214 0.0 ^o	100
73 43/73 26.857 0.83 (0.268) 0.02	200
	300
75 59/62/75 28.115 0.80 (0.920) 0.03	300
76 61/70/74/76 ND 0.8	300
77 ND 0.04	
78 ND 0.0°	
79 ND 0.0°	
80 ND 0.0°	
81 ND 0.0°	120
82 ND 0.04	100
83 ND 0.0°	100
84 32.340 1.64 0.153 0.04	100
	120
	240
87 86/87/97/108/119/125 ND 0.2	240
88 88/91 32.105 1.60 0.158 0.02	200
89 32.877 1.49 0.0144 0.01	
	120
91 88/91 32.105 1.60 (0.158) 0.02	
92 33.816 1.55 Ò.0352 0.01	
93 93/98/100/102 31.552 1.56 0.126 0.04	100
94 30.630 1.56 0.0221 0.02	
95 31.133 1.59 0.688 0.07	
96 28.081 1.71 0.0707 0.01	100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

418 Basement AQ02483 10220944006 P130306A 08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
97	86/87/97/108/119/125			ND		0.240
98	93/98/100/102	31.552	1.56	(0.126)		0.0400
99				` NĎ		0.200
100	93/98/100/102	31.552	1.56	(0.126)		0.0400
101	90/101/113	34.470	1.56	(0.152)		0.120
102	93/98/100/102	31.552	1.56	(0.126)		0.0400
103		30.395	1.66	0.0172		0.0100
104				ND		0.0100
105				ND		0.200
106				ND		0.0100
107	107/124			ND		0.0200
108	86/87/97/108/119/125			ND		0.240
109				ND		0.0100
110	110/115			ND		0.400
111				ND		0.0100
112				ND		0.0100
113	90/101/113	34.470	1.56	(0.152)		0.120
114				ND		0.0100
115	110/115			ND		0.400
116	85/116/117			ND		0.120
117	85/116/117			ND		0.120
118				ND		0.256
119	86/87/97/108/119/125			ND		0.240
120				ND		0.0100
121				ND		0.0100
122				ND		0.0100
123				ND		0.0100
124	107/124			ND		0.0200
125	86/87/97/108/119/125			ND		0.240
126				ND		0.0100
127	100/100			ND		0.0100
128	128/166			ND		0.0200
129	129/138/163			ND		0.0600
130				ND		0.0100
131				ND		0.0100
132		39.986	1.12	0.0141		0.0100
133	10.1/1.10			ND		0.0100
134	134/143		4.07	ND		0.0200
135	135/151	37.639	1.27	0.0201		0.0200
136				ND		0.0100
137	400/400/400			ND		0.0100
138	129/138/163			ND		0.0600
139	139/140			ND ND		0.0200
140	139/140			ND ND		0.0200
141				ND ND		0.0200
142	124/142			ND ND		0.0100
143	134/143			ND ND		0.0200
144				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Basement AQ02483 10220944006 P130306A 08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146				ND		0.0100
147	147/149	38.662	1.22	0.0424		0.0200
148				ND		0.0100
149	147/149	38.662	1.22	(0.0424)		0.0200
150				` NĎ		0.0100
151	135/151	37.639	1.27	(0.0201)		0.0200
152				NĎ		0.0100
153	153/168			ND		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157			ND		0.0200
157	156/157			ND		0.0200
158				ND		0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162	100/100/100			ND		0.0100
163	129/138/163			ND		0.0600
164				ND		0.0100
165	400/400			ND		0.0100
166	128/166			ND		0.0200
167	450/460			ND ND		0.0200
168	153/168			ND ND		0.0400
169				ND ND		0.0120
170 171	171/173			ND ND		0.0100 0.0200
171	17 1/173			ND ND		0.0200
172	171/173			ND ND		0.0200
173	17 1/173			ND ND		0.0200
175				ND		0.0100
176				ND		0.0100
177				ND		0.0100
178				ND		0.0100
179		40.808	1.00	0.0107		0.0100
180	180/193			ND		0.0400
181				ND		0.0100
182				ND		0.0100
183	183/185			ND		0.0200
184				ND		0.0100
185	183/185			ND		0.0200
186				ND		0.0100
187		44.731	1.03	0.0605		0.0100
188				ND		0.0100
189				ND		0.0200
190				ND		0.0100
191				ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Basement AQ02483 10220944006 P130306A 08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199	51.237	0.84	0.0509		0.0300
199	198/199	51.237	0.84	(0.0509)		0.0300
200	197/200			` NĎ		0.0300
201				ND		0.0150
202		46.207	0.89	0.0675		0.0150
203		52.159	0.86	0.0361		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208		53.438	0.77	0.0234		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

HRS Reference #69

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 418 Basement AQ02483 10220944006 P130306A_08

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.0281	
Total Dichloro Biphenyls	1.75	
Total Trichloro Biphenyls	24.1	
Total Tetrachloro Biphenyls	44.3	
Total Pentachloro Biphenyls	1.44	
Total Hexachloro Biphenyls	0.0766	
Total Heptachloro Biphenyls	0.0713	
Total Octachloro Biphenyls	0.155	
Total Nonachloro Biphenyls	0.0234	
Decachloro Biphenyls	ND	
Total PCBs	72.0	

ND = Not Detected

Tel: 612-607-1700

Fax: 612-607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 403 Living Room AQ02484

Lab Sample ID 10220944007 Filename P130306A_09

Injected By CVS

Total Amount Extracted1.00 SampleMatrixPUF% MoistureNADilution3

Dry Weight Extracted NA Collected 02/21/2013 10:42 ICAL ID P130306A02 Received 02/23/2013 09:30 P130306A 01 02/28/2013 12:30 CCal Filename(s) Extracted Method Blank ID **BLANK-35566** Analyzed 03/06/2013 19:29

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery	
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-2-V-DICB 13C-2,2'-DICB 13C-2,2',6-TrCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4',5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-FeCB 13C-2,3',4,4',5,5'-HxCB 13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-DeCB 13C-2,2',3,4',5,6,6'-OeCB 13C-2,2',3,3',4,4',5,5',6-OeCB 13C-2,2',3,3',4,4',5,5',6-OeCB 13C-2,2',3,3',4,4',5,5',6-OeCB 13C-2,2',3,3',4,4',5,5',6-OeCB 13C-2,2',3,3',4,4',5,5',6-OeCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208	8.743 12.074 12.421 20.521 16.771 29.105 20.856 36.750 37.354 27.663 41.143 40.472 39.903 39.550 44.463 34.218 47.648 46.475 51.102 40.456 54.019 46.173 56.649 57.575 53.394	1.50 2.28 1.63 1.50 1.03 1.00 0.86 0.81 0.74 1.60 1.75 1.62 1.51 1.59 1.21 1.31 1.24 1.21 1.05 1.06 0.90 0.91 0.75	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.508 0.752 0.980 0.781 1.10 0.823 0.895 1.02 1.13 1.34 0.970 0.962 1.00 1.03 0.692 2.46 2.14 1.16 0.952 2.05 0.853 1.83 1.46 2.19 1.37	32	- -
13CDeCB	209	58.480	0.67	2.0	2.28	114	
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.360 37.454 43.742	1.09 1.51 1.05	2.0 2.0 2.0	0.899 1.41 2.32	45 71 116	
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.261 26.573 34.470 43.239 56.390	1.54 0.81 1.59 1.25 0.87	2.0 2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA	

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Page 85 of 135

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 403 Living Room AQ02484 10220944007 P130306A 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1		8.803	3.15	0.170		0.0200
2		11.858	2.29 I		0.0744	0.0200
3		12.110	2.73	0.183		0.0200
4		12.433	1.34	0.909		0.100
5		16.423	1.59	0.958		0.0200
6				ND		0.0200
7		15.824	1.58	0.264		0.0200
8		16.819	1.72	0.668		0.250
9		15.500	1.29 I		0.0674	0.0200
10		12.685	1.54	17.1		0.0200
11		19.742	1.57	2.55		0.139
12	12/13			ND		0.0100
13	12/13			ND		0.0100
14				ND		0.0100
15		20.533	1.70	0.519		0.132
16		20.473	0.92	0.660		0.100
17	40400	19.886	1.03	2.48		0.100
18	18/30	19.347	1.10	1.97		0.200
19	00/00	16.795	1.06	35.8		0.0264
20	20/28	24.394	1.08	2.80		0.516
21	21/33	24.662	1.09	0.545		0.540
22		25.098	1.06	0.677		0.380
23 24		20.317	0.92	ND 1.34		0.00500 0.0200
2 4 25		23.622	1.04	0.248		0.0200
26 26	26/29	23.354	1.04	0.808		0.100
27	20/29	20.161	1.04	5.16		0.0200
28	20/28	24.394	1.03	(2.80)		0.516
29	26/29	23.354	1.04	(0.808)		0.0400
30	18/30	19.347	1.10	(1.97)		0.200
31	10/00	24.025	1.08	2.17		0.520
32		21.158	1.05	13.2		0.100
33	21/33	24.662	1.09	(0.545)		0.540
34				ND		0.00500
35		28.686	1.38 I		0.0492	0.0200
36				ND		0.0100
37		29.155	0.89	0.287		0.212
38				ND		0.0100
39				ND		0.0100
40	40/41/71	28.954	0.72	2.99		0.120
41	40/41/71	28.954	0.72	(2.99)		0.120
42		28.367	0.85	2.03		0.200
43	43/73			ND		0.0200
44	44/47/65	27.747	0.77	7.26		0.600
45	45/51	24.444	0.81	4.75		0.0800
46	44/47/05	24.813	0.81	1.15		0.0100
47	44/47/65	27.747	0.77	(7.26)		0.600
48		27.495	0.84	1.23		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

HRS Reference #69

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 403 Living Room AQ02484 10220944007 P130306A 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69	27.177	0.78	5.86		0.400
50	50/53	23.639	0.77	3.92		0.0200
51	45/51	24.444	0.81	(4.75)		0.0800
52		26.607	0.77	`10.4		0.492
53	50/53	23.639	0.77	(3.92)		0.0200
54		20.873	0.77	Ò.24Ŕ		0.0100
55				ND		0.0100
56		33.263	0.83	0.435		0.200
57				ND		0.0100
58				ND		0.0100
59	59/62/75	28.132	0.71	0.713		0.0300
60		33.498	0.75	0.200		0.200
61	61/70/74/76	32.156	0.77	3.69		0.800
62	59/62/75	28.132	0.71	(0.713)		0.0300
63				ND		0.0100
64		29.222	0.80	2.88		0.200
65	44/47/65	27.747	0.77	(7.26)		0.600
66		32.508	0.81	1.07		0.336
67				ND		0.0100
68				ND (7.00)		0.0100
69	49/69	27.177	0.78	(5.86)		0.400
70	61/70/74/76	32.156	0.77	(3.69)		0.800
71	40/41/71	28.954	0.72	(2.99)		0.120
72	40/70			ND		0.0100
73	43/73		 0.77	ND (2.60)		0.0200
74 75	61/70/74/76	32.156	0.77	(3.69)		0.800
75 76	59/62/75 61/70/74/76	28.132 32.156	0.71 0.77	(0.713) (3.69)		0.0300 0.800
76 77	01/70/74/70	32.156 	0.77	(3.69) ND		0.0400
7 <i>1</i> 78				ND ND		0.0400
78 79		35.677	1.00 I	IND 	0.0546	0.0100
79 80			1.001	ND	0.0340	0.0100
81		36.750	1.52 I		0.0219	0.0120
82		36.968	1.47	0.611	0.0210	0.0400
83		34.990	1.52	0.304		0.0100
84		32.357	1.52	2.17		0.0400
85	85/116/117	36.465	1.59	0.998		0.120
86	86/87/97/108/119/125	35.761	1.53	4.18		0.240
87	86/87/97/108/119/125	35.761	1.53	(4.18)		0.240
88	88/91	32.123	1.55	1.06		0.0200
89				ND		0.0100
90	90/101/113	34.504	1.66	5.98		0.120
91	88/91	32.123	1.55	(1.06)		0.0200
92		33.833	1.59	`1.0Ś		0.0100
93	93/98/100/102	31.569	1.65	0.337		0.0400
94				ND		0.0200
95		31.150	1.55	5.43		0.0760
96		28.082	1.25 I		0.116	0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Tel: 612-607-1700

Fax: 612- 607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID 403 Living Room AQ02484 Lab Sample ID 10220944007

Filename P130306A 09

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
					11970	
97	86/87/97/108/119/125	35.761	1.53	(4.18)		0.240
98	93/98/100/102	31.569	1.65	(0.337)		0.0400
99	00/00/400/400	35.124	1.51	3.04		0.200
100	93/98/100/102	31.569	1.65	(0.337)		0.0400
101	90/101/113	34.504	1.66	(5.98)		0.120
102	93/98/100/102	31.569	1.65	(0.337)		0.0400
103				ND		0.0100
104				ND		0.0100
105		41.160	1.56	1.12		0.200
106	407/404		4.70	ND		0.0100
107	107/124	39.198	1.78	0.145		0.0200
108	86/87/97/108/119/125	35.761	1.53	(4.18)		0.240
109	440/445	39.466	1.66	0.182		0.0100
110	110/115	36.633	1.56	7.27		0.400
111				ND		0.0100
112	00/404/440		4.00	ND (5.00)		0.0100
113	90/101/113	34.504	1.66	(5.98)		0.120
114	440/445	36.633	 1.56	NĎ		0.0100
115 116	110/115 85/116/117		1.50	(7.27) (0.998)		0.400
		36.465 36.465	1.59 1.59	(0.998)		0.120 0.120
117 118	85/116/117	39.936	1.60	3.23		0.120
119	86/87/97/108/119/125	35.761	1.53	(4.18)		0.240
120	00/07/97/100/119/125	33.761	1.55	(4.16) ND		0.0100
121				ND ND		0.0100
122				ND ND		0.0100
123		39.567	2.30 I		0.0632	0.0100
123	107/124	39.198	1.78	(0.145)	0.0032	0.0200
125	86/87/97/108/119/125	35.761	1.53	(4.18)		0.240
126	00/07/97/100/119/129			ND		0.0100
127				ND		0.0100
128	128/166	44.580	1.22	0.395		0.0200
129	129/138/163	43.272	1.26	3.02		0.0600
130	120/100/100	42.585	1.18	0.163		0.0100
131		39.517	1.30	0.106		0.0100
132		40.003	1.21	1.47		0.0100
133				ND		0.0100
134	134/143	38.880	1.12	0.286		0.0200
135	135/151	37.673	1.23	1.46		0.0200
136		34.973	1.20	0.843		0.0100
137		42.803	1.04 I		0.166	0.0100
138	129/138/163	43.272	1.26	(3.02)		0.0600
139	139/140	39.316	1.28	0.100		0.0200
140	139/140	39.316	1.28	(0.100)		0.0200
141		42.132	1.16	`0.497		0.0200
142				ND		0.0100
143	134/143	38.880	1.12	(0.286)		0.0200
144		38.259	1.27	0.203		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 403 Living Room AQ02484 10220944007 P130306A 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146		41.294	1.38	0.386		0.0100
147	147/149	38.679	1.25	3.00		0.0200
148				ND		0.0100
149	147/149	38.679	1.25	(3.00)		0.0200
150				` NĎ		0.0100
151	135/151	37.673	1.23	(1.46)		0.0200
152				ND		0.0100
153	153/168	41.948	1.27	2.16		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157	47.665	1.23	0.212		0.0200
157	156/157	47.665	1.23	(0.212)		0.0200
158		43.675	1.45 I		0.259	0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162	400/400/400	40.070	4.00	ND		0.0100
163	129/138/163	43.272 42.937	1.26 1.20	(3.02) 0.176		0.0600 0.0100
164 165		42.937	1.20	0.176 ND		0.0100
166	128/166	44.580	1.22	(0.395)		0.0200
167	120/100	46.508	1.22	0.0823		0.0200
168	153/168	41.948	1.11	(2.16)		0.0400
169	133/100		1.27	(2.10) ND		0.0120
170		50.449	1.22 I		0.0715	0.0120
171	171/173	46.727	0.98	0.0530	0.07 10	0.0200
172	17 17 17 0	48.504	1.06	0.0288		0.0100
173	171/173	46.727	0.98	(0.0530)		0.0200
174		45.586	0.88	0.129		0.0100
175				ND		0.0100
176		41.780	0.86 I		0.0326	0.0100
177		46.056	1.00	0.0724		0.0100
178		43.759	0.86 I		0.0409	0.0100
179		40.825	1.15	0.150		0.0100
180	180/193	49.141	1.11	0.188		0.0400
181				ND		0.0100
182				ND		0.0100
183	183/185	45.368	0.91	0.0934		0.0200
184				ND		0.0100
185	183/185	45.368	0.91	(0.0934)		0.0200
186				ND		0.0100
187		44.714	1.05	0.249		0.0100
188				ND		0.0100
189		 E4 000	4 47 1	ND	0.0402	0.0200
190		51.002	1.47 l		0.0193	0.0100
191				ND ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 403 Living Room AQ02484 10220944007 P130306A 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193	49.141	1.11	(0.188)		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202				ND		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

HRS Reference #69

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 403 Living Room AQ02484 10220944007 P130306A_09

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.353	
Total Dichloro Biphenyls	22.9	
Total Trichloro Biphenyls	68.1	
Total Tetrachloro Biphenyls	48.8	
Total Pentachloro Biphenyls	37.1	
Total Hexachloro Biphenyls	14.6	
Total Heptachloro Biphenyls	0.964	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	193	

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 406 Basement AQ02485

10220944008 Lab Sample ID Filename P130306A_10

Injected By **CVS**

1.00 Sample **PUF Total Amount Extracted** Matrix % Moisture NA Dilution

Dry Weight Extracted NA Collected 02/21/2013 12:44 ICAL ID P130306A02 Received 02/23/2013 09:30 CCal Filename(s) P130306A 01 Extracted 02/28/2013 12:30 Method Blank ID **BLANK-35566** Analyzed 03/06/2013 20:31

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-2-PioCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4'-TrCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	8.755 12.074 12.422 20.521 16.807 29.105 20.874 36.717 37.354 27.681 41.144 40.439 39.886 39.534 44.447 34.202 47.666 46.459 51.103 40.456 54.020 46.174 56.649 57.576 53.395 58.481	2.36 2.88 1.60 1.50 1.11 0.95 0.83 0.76 0.81 1.50 1.46 1.55 1.53 1.48 1.50 1.23 1.27 1.27 0.97 1.11 0.89 0.93 0.82 0.77	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.794 0.961 1.27 0.906 1.26 0.838 1.11 0.880 0.940 1.68 0.952 0.952 0.952 0.900 1.02 0.844 2.24 2.28 1.16 1.09 1.74 0.861 1.82 1.57 2.42 1.48 2.34	43 I 48 63 45 63 42 56 44 47 84 48 48 45 51 42 112 57 58 54 87 43 91 78 121 74 117
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.361 37.438 43.726	1.05 1.63 1.01	2.0 2.0 2.0	1.02 1.46 2.17	51 73 108
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.333 26.557 34.437 43.239 56.391	1.60 0.82 1.65 1.26 0.92	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Basement AQ02485 10220944008 P130306A 10

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1		8.743	3.38	0.437		0.0200
2		11.858	3.50	0.0665 B		0.0200
3		12.086	3.53	0.352		0.0200
4		12.434	1.46	3.17		0.100
5		16.268	1.45	0.179		0.0200
6		15.873	1.54	1.32		0.0200
7		15.573	1.35	0.296		0.0200
8		16.460	1.52	5.96		0.250
9		15.357	1.47	0.516		0.0200
10		12.697	1.33	0.679		0.0200
11		19.767	1.65	0.321 B		0.139
12	12/13	20.138	1.40	0.412		0.0100
13	12/13	20.138	1.40	(0.412)		0.0100
14				ND		0.0100
15		20.557	1.61	4.35		0.132
16 17		20.461	1.05 1.08	6.72 7.26		0.100 0.100
18	18/30	19.898 19.359	1.06	13.1		0.100
19	10/30	16.831	1.02	2.71		0.200
20	20/28	24.378	1.01	17.2		0.516
21	21/33	24.663	1.05	9.55		0.540
22	21/33	25.115	1.03	5.77		0.380
23		23.113		ND		0.00500
24		20.306	1.06	0.315		0.0200
25		23.640	1.05	1.25		0.100
26	26/29	23.355	1.02	2.89		0.0400
27		20.174	0.98	1.40		0.0200
28	20/28	24.378	1.06	(17.2)		0.516
29	26/29	23.355	1.02	(2.89)		0.0400
30	18/30	19.359	1.02	(13.1)		0.200
31		24.025	1.03	`14.Ó		0.520
32		21.159	1.08	3.90		0.100
33	21/33	24.663	1.05	(9.55)		0.540
34				ND		0.00500
35				ND		0.0200
36				ND		0.0100
37		29.139	1.05	2.60		0.212
38				ND ND		0.0100
39 40	40/41/71		 0.70	ND 6.61		0.0100 0.120
41	40/41/71 40/41/71	28.938 28.938	0.79 0.79	(6.61)		0.120
42	40/41/71	28.351	0.79	3.52		0.120
43	43/73	26.876	0.77	0.501		0.0200
44	44/47/65	27.731	0.72	12.1		0.600
45	45/51	24.428	0.75	3.17		0.0800
46		24.813	0.80	1.04		0.0100
47	44/47/65	27.731	0.79	(12.1)		0.600
48		27.513	0.74	3.49		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Basement AQ02485 10220944008 P130306A 10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69	27.177	0.77	7.09		0.400
50	50/53	23.657	0.77	2.13		0.0200
51	45/51	24.428	0.75	(3.17)		0.0800
52	50/50	26.608	0.76	10.1		0.492
53	50/53	23.657	0.77	(2.13)	0.0262	0.0200
54 55		20.907	1.28 I	ND	0.0363	0.0100
56		33.230	 0.75	1.05		0.0100 0.200
56 57			0.75	ND		0.200
5 <i>1</i> 58				ND ND		0.0100
56 59	59/62/75	28.133	0.78	1.24		0.0300
60	39/02/73	33.481	0.78	0.627		0.200
61	61/70/74/76	32.140	0.76	5.75		0.800
62	59/62/75	28.133	0.78	(1.24)		0.0300
63	39/02/73	31.771	0.78	0.177		0.0300
64		29.189	0.83	5.11		0.200
65	44/47/65	27.731	0.79	(12.1)		0.600
66	44/4//00	32.526	0.83	2.25		0.336
67		31.503	0.90 I		0.213	0.0100
68				ND		0.0100
69	49/69	27.177	0.77	(7.09)		0.400
70	61/70/74/76	32.140	0.76	(5.75)		0.800
71	40/41/71	28.938	0.79	(6.61)		0.120
72	10/11//1			ND		0.0100
73	43/73	26.876	0.72	(0.501)		0.0200
74	61/70/74/76	32.140	0.76	(5.75)		0.800
75	59/62/75	28.133	0.78	(1.24)		0.0300
76	61/70/74/76	32.140	0.76	(5.75)		0.800
77		37.422	0.49 I		0.0660	0.0400
78				ND		0.0100
79				ND		0.0100
80				ND		0.0100
81		36.717	0.81	0.0239		0.0120
82		36.952	1.26 I		0.190	0.0400
83		34.974	1.64	0.117		0.0100
84		32.325	1.43	0.838		0.0400
85	85/116/117	36.432	1.61	0.298		0.120
86	86/87/97/108/119/125	35.745	1.62	1.46		0.240
87	86/87/97/108/119/125	35.745	1.62	(1.46)		0.240
88	88/91	32.107	1.67	0.536		0.0200
89				ND		0.0100
90	90/101/113	34.487	1.59	2.05		0.120
91	88/91	32.107	1.67	(0.536)		0.0200
92		33.833	1.60	0.359		0.0100
93	93/98/100/102	31.587	1.70	0.275		0.0400
94				ND		0.0200
95		31.151	1.58	2.18		0.0760
96		28.100	1.60	0.109		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Basement AQ02485 10220944008 P130306A 10

		_		Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/S	ng/S	ng/S
97	86/87/97/108/119/125	35.745	1.62	(1.46)		0.240
98	93/98/100/102	31.587	1.70	(0.275)		0.0400
99		35.141	1.52	0.968		0.200
100	93/98/100/102	31.587	1.70	(0.275)		0.0400
101	90/101/113	34.487	1.59	`(2.05)		0.120
102	93/98/100/102	31.587	1.70	(0.275)		0.0400
103				` NĎ		0.0100
104				ND		0.0100
105		41.144	1.64	0.250		0.200
106				ND		0.0100
107	107/124	39.182	1.37	0.0396		0.0200
108	86/87/97/108/119/125	35.745	1.62	(1.46)		0.240
109		39.433	1.60	0.0522		0.0100
110	110/115	36.617	1.69	1.85		0.400
111				ND		0.0100
112				ND		0.0100
113	90/101/113	34.487	1.59	(2.05)		0.120
114				ND		0.0100
115	110/115	36.617	1.69	(1.85)		0.400
116	85/116/117	36.432	1.61	(0.298)		0.120
117	85/116/117	36.432	1.61	(0.298)		0.120
118	30/110/11/	39.937	1.74	0.804		0.256
119	86/87/97/108/119/125	35.745	1.62	(1.46)		0.240
120	00/07/07/100/110/120			ND		0.0100
121				ND		0.0100
122				ND		0.0100
123		39.551	2.08 I		0.0212	0.0100
124	107/124	39.182	1.37	(0.0396)		0.0200
125	86/87/97/108/119/125	35.745	1.62	(1.46)		0.240
126	00/07/07/100/110/120			ND		0.0100
127				ND		0.0100
128	128/166	44.581	1.29	0.0457		0.0200
129	129/138/163	43.256	1.52 I		0.412	0.0600
130	120/100/100	42.552	0.72 I		0.0194	0.0100
131				ND		0.0100
132		39.987	1.33	0.234		0.0100
133				ND		0.0100
134	134/143			ND		0.0200
135	135/151	37.690	1.46 I		0.409	0.0200
136	100/101	34.957	1.17	0.284		0.0100
137		42.804	1.27	0.0353		0.0100
138	129/138/163	43.256	1.52 I	0.0000	(0.412)	0.0600
139	139/140		1.52 1	ND	(0.412)	0.0200
140	139/140			ND		0.0200
141	100/140	42.133	1.22	0.0965		0.0200
142			1.22	0.0903 ND		0.0200
143	134/143			ND ND		0.0200
144	107/170	38.277	1.51 I	ND 	0.0682	0.0200
177		50.211	1.011		0.0002	0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Page 95 of 135

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Basement AQ02485 10220944008 P130306A 10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146		41.328	1.37	0.105		0.0100
147	147/149	38.662	1.25	0.706		0.0200
148				ND		0.0100
149	147/149	38.662	1.25	(0.706)		0.0200
150				ND		0.0100
151	135/151	37.690	1.46 I		(0.409)	0.0200
152				ND		0.0100
153	153/168	41.982	1.17	0.456		0.0400
154				ND		0.0100
155	450/457			ND		0.0100
156	156/157			ND		0.0200
157 158	156/157			ND ND		0.0200 0.200
156				ND ND		0.200
160				ND ND		0.0100
161				ND		0.0100
162				ND		0.0100
163	129/138/163	43.256	1.52 I		(0.412)	0.0600
164	120/100/100	42.954	1.04 I		0.0239	0.0100
165				ND		0.0100
166	128/166	44.581	1.29	(0.0457)		0.0200
167				` NĎ		0.0200
168	153/168	41.982	1.17	(0.456)		0.0400
169				` NĎ		0.0120
170				ND		0.0100
171	171/173			ND		0.0200
172				ND		0.0100
173	171/173			ND		0.0200
174		45.587	0.94	0.0506		0.0100
175		44.704		ND 0.0050		0.0100
176		41.781	0.98	0.0353		0.0100
177 178		46.073	0.92	0.0321 ND		0.0100 0.0100
179		40.825	0.73 I	IND 	0.0509	0.0100
180	180/193	49.175	0.731	0.0632	0.0309	0.0400
181	100/100			ND		0.0100
182				ND		0.0100
183	183/185	45.386	1.14	0.0578		0.0200
184				ND		0.0100
185	183/185	45.386	1.14	(0.0578)		0.0200
186				` NĎ		0.0100
187		44.715	0.87 I		0.0871	0.0100
188				ND		0.0100
189				ND		0.0200
190				ND		0.0100
191				ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Basement AQ02485 10220944008 P130306A 10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193	49.175	0.92	(0.0632)		0.0400
194				` NĎ		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202				ND		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Basement AQ02485 10220944008 P130306A_10

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.856	
Total Dichloro Biphenyls	17.2	
Total Trichloro Biphenyls	88.7	
Total Tetrachloro Biphenyls	66.0	
Total Pentachloro Biphenyls	12.2	
Total Hexachloro Biphenyls	1.96	
Total Heptachloro Biphenyls	0.239	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	187	

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Client's Sample ID 406 Dining Room AQ02486

 Lab Sample ID
 10220944009

 Filename
 P130306A_11

Injected By CVS

Total Amount Extracted1.00 SampleMatrixPUF% MoistureNADilution3

Dry Weight Extracted NA Collected 02/21/2013 12:43 ICAL ID P130306A02 Received 02/23/2013 09:30 P130306A 01 CCal Filename(s) Extracted 02/28/2013 12:30 Method Blank ID **BLANK-35566** Analyzed 03/06/2013 21:34

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.863	2.27	2.0	0.727	40 I
13C-4-MoCB	3	12.278	2.77	2.0	1.04	52
13C-2,2'-DiCB	4	12.613	1.58	2.0	1.37	69
13C-4,4'-DiCB	15	20.568	1.53	2.0	1.04	52
13C-2,2',6-TrCB	19	16.878	1.01	2.0	1.43	71
13C-3,4,4'-TrCB	37	29.138	1.04	2.0	1.05	53
13C-2,2',6,6'-TeCB	54	20.906	0.76	2.0	1.20	60
13C-3,4,4',5-TeCB	<u>81</u>	36.767	0.81	2.0	1.04	52
13C-3,3',4,4'-TeCB	77	37.354	0.84	2.0	1.12	56
13C-2,2',4,6,6'-PeCB	104	27.680	1.64	2.0	1.69	84
13C-2,3,3',4,4'-PeCB	105	41.143	1.52	2.0	1.05	52
13C-2,3,4,4',5-PeCB	114	40.472	1.56	2.0	1.09	54
13C-2,3',4,4',5-PeCB	118	39.902	1.58	2.0	1.08	54
13C-2,3',4,4',5'-PeCB	123	39.550	1.60	2.0	1.07	54
13C-3,3',4,4',5-PeCB	126	44.446	1.60	2.0	0.921	46
13C-2,2',4,4',6,6'-HxCB	155	34.218	1.27	2.0	2.33	117
13C-HxCB (156/157)	156/157	47.648	1.21	4.0	2.33	58
13C-2,3',4,4',5,5'-HxĆB	167 169	46.458	1.31 1.33	2.0	1.27 1.14	63 57
13C-3,3',4,4',5,5'-HxCB	188	51.085 40.472	1.04	2.0 2.0	1.14	57 93
13C-2,2',3,4',5,6,6'-HpCB	189	54.019	1.10	2.0	0.933	47
13C-2,3,3',4,4',5,5'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB	202	46.173	0.89	2.0	1.85	93
13C-2,3,3',4,4',5,5',6-OccB	205	56.648	0.89	2.0	1.53	93 77
13C-2,2',3,3',4,4',5,5',6-NoCB	206	57.575	0.79	2.0	2.36	118
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	53.394	0.73	2.0	1.47	74
13CDeCB	209	58.480	0.70	2.0	2.40	120
100 0000	200	00. 4 00	0.70	2.0	2.40	120
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.393	1.07	2.0	1.11	55
13C-2,3,3',5,5'-PeCB	111	37.454	1.55	2.0	1.54	77
13C-2,2',3,3',5,5',6-HpCB	178	43.725	1.04	2.0	2.24	112
Recovery Standards						
13C-2,5-DiCB	9	15.405	1.56	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.607	0.83	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.453	1.66	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.222	1.23	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	56.390	0.90	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

13020166

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

406 Dining Room AQ02486 10220944009 P130306A 11

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1		8.839	3.08	0.839		0.0200
2		12.110	2.87	0.331		0.0200
3		12.314	3.16	1.34		0.0200
4		12.625	1.57	13.7		0.100
5		16.339	1.52	0.997		0.0200
6		15.956	1.53	6.56		0.0200
7		15.632	1.54	1.29		0.0200
8		16.519	1.56	30.4		0.250
9		15.429	1.57	2.21		0.0200
10		12.853	1.53	2.44		0.0200
11	10/10	19.814	1.58	2.25		0.139
12	12/13	20.173	1.52	2.48		0.0100
13	12/13	20.173	1.52	(2.48)		0.0100
14				NĎ		0.0100
15		20.592	1.57	20.0		0.132
16		20.508	1.03	28.5		0.100
17		19.945	1.02	29.7		0.100
18	18/30	19.406	1.02	53.6		0.200
19		16.890	1.02	11.6		0.0264
20	20/28	24.410	1.06	65.5		0.516
21	21/33	24.695	1.04	39.6		0.540
22		25.148	1.04	23.7		0.380
23		23.002	1.10	0.0946		0.00500
24		20.377	0.91	1.50		0.0200
25		23.673	1.10	4.89		0.100
26	26/29	23.388	1.07	11.4		0.0400
27		20.221	1.03	5.57		0.0200
28	20/28	24.410	1.06	(65.5)		0.516
29	26/29	23.388	1.07	(11.4)		0.0400
30	18/30	19.406	1.02	(53.6)		0.200
31		24.058	1.05	`52.Ź		0.520
32		21.208	1.05	16.5		0.100
33	21/33	24.695	1.04	(39.6)		0.540
34		22.817	1.06	0.212		0.00500
35		28.685	1.05	0.649		0.0200
36				ND		0.0100
37		29.155	1.04	10.3		0.212
38		28.149	1.26 I		0.0577	0.0100
39		27.545	1.04	0.190		0.0100
40	40/41/71	28.971	0.78	24.1		0.120
41	40/41/71	28.971	0.78	(24.1)		0.120
42		28.384	0.79	`12.6		0.200
43	43/73	26.892	0.80	1.73		0.0200
44	44/47/65	27.764	0.77	40.6		0.600
45	45/51	24.477	0.76	12.1		0.0800
46		24.846	0.78	4.01		0.0100
47	44/47/65	27.764	0.77	(40.6)		0.600
48		27.529	0.77	11.9		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

13020166

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Dining Room AQ02486 10220944009 P130306A 11

49 49/69 27.210 0.77 24.6 50 50/53 23.689 0.77 7.83 51 45/51 24.477 0.76 (12.1) 52 26.623 0.78 33.9 53 50/53 23.689 0.77 (7.83) 54 20.940 0.86 0.160	0.400 0.0200 0.0800 0.492 0.0200 0.0100 0.200 0.0100 0.0100
50 50/53 23.689 0.77 7.83 51 45/51 24.477 0.76 (12.1) 52 26.623 0.78 33.9 53 50/53 23.689 0.77 (7.83)	0.0800 0.492 0.0200 0.0100 0.0100 0.200 0.0100 0.0100
51 45/51 24.477 0.76 (12.1) 52 26.623 0.78 33.9 53 50/53 23.689 0.77 (7.83)	0.0800 0.492 0.0200 0.0100 0.0100 0.200 0.0100 0.0100
52 26.623 0.78 33.9 53 50/53 23.689 0.77 (7.83)	0.492 0.0200 0.0100 0.0100 0.200 0.0100 0.0100
53 50/53 23.689 0.77 (7.83)	0.0200 0.0100 0.0100 0.200 0.0100 0.0100
54 20 040 0.86 à 16ó	0.0100 0.0100 0.200 0.0100 0.0100
J T	0.0100 0.200 0.0100 0.0100
55 ND	0.200 0.0100 0.0100
56 33.263 0.82 4.03	0.0100
57 31.033 0.59 0.102	
58 ND	
59 59/62/75 28.149 0.78 4.22	0.0300
60 33.481 0.77 2.40	0.200
61 61/70/74/76 32.156 0.78 19.6	0.800
62 59/62/75 28.149 0.78 (4.22)	0.0300
63 31.804 0.79 0.561	0.0100
64 29.222 0.78 17.4	0.200
65 44/47/65 27.764 0.77 (40.6)	0.600
66 32.525 0.79 8.58	0.336
67 31.519 0.76 0.680	0.0100
68 30.563 0.77 0.0552	0.0100
69 49/69 27.210 0.77 (24.6)	0.400
70 61/70/74/76 32.156 0.78 (19.6)	0.800
71 40/41/71 28.971 0.78 (24.1)	0.120
72 30.228 0.58 0.0800	0.0100
73 43/73 26.892 0.80 (1.73)	0.0200
74 61/70/74/76 32.156 0.78 (19.6)	0.800
75 59/62/75 28.149 0.78 (4.22) 76 61/70/74/76 32.156 0.78 (19.6)	0.0300 0.800
76 61/70/74/76 32.156 0.78 (19.6) 77 37.370 0.80 0.305	0.0400
78 ND	0.0400
79 35.677 1.14 I 0.0313	0.0100
80 ND	0.0100
81 36.784 0.66 0.0465	0.0120
82 36.951 1.48 0.451	0.0400
83 34.990 1.34 0.263	0.0100
84 32.357 1.51 2.08	0.0400
85 85/116/117 36.448 1.48 0.788	0.120
86 86/87/97/108/119/125 35.761 1.59 3.00	0.240
87 86/87/97/108/119/125 35.761 1.59 (3.00)	0.240
88 88/91 32.139 1.58 1.33	0.0200
89 32.894 1.80 l 0.174	0.0100
90 90/101/113 34.487 1.53 4.95	0.120
91 88/91 32.139 1.58 (1.33)	0.0200
92 33.850 1.56 0.843	0.0100
93 93/98/100/102 31.569 1.70 0.735	0.0400
94 30.647 1.36 0.103	0.0200
95 31.150 1.54 6.33	0.0760
96 28.115 1.36 0.326	0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID 406 Dining Room AQ02486 Lab Sample ID 10220944009

Filename P130306A 11

IIIDA O	On aboth as	_ DT	D-41-	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/S	ng/S	ng/S
97	86/87/97/108/119/125	35.761	1.59	(3.00)		0.240
98	93/98/100/102	31.569	1.70	(0.735)		0.0400
99		35.141	1.60	` 2.13́		0.200
100	93/98/100/102	31.569	1.70	(0.735)		0.0400
101	90/101/113	34.487	1.53	`(4.95)		0.120
102	93/98/100/102	31.569	1.70	(0̀.735)́		0.0400
103		30.413	1.67	Ò.077Í		0.0100
104				ND		0.0100
105		41.160	1.51	0.499		0.200
106				ND		0.0100
107	107/124	39.198	1.29 I		0.0660	0.0200
108	86/87/97/108/119/125	35.761	1.59	(3.00)		0.240
109		39.450	1.45	0.0908		0.0100
110	110/115	36.633	1.54	3.86		0.400
111				ND		0.0100
112				ND		0.0100
113	90/101/113	34.487	1.53	(4.95)		0.120
114	30, 10 1, 110			ND		0.0100
115	110/115	36.633	1.54	(3.86)		0.400
116	85/116/117	36.448	1.48	(0.788)		0.120
117	85/116/117	36.448	1.48	(0.788)		0.120
118	00/110/11/	39.936	1.57	1.50		0.256
119	86/87/97/108/119/125	35.761	1.59	(3.00)		0.240
120	00/07/37/100/119/129			ND		0.0100
121				ND		0.0100
122				ND		0.0100
123		39.584	1.75	0.0464		0.0100
124	107/124	39.198	1.79 I		(0.0660)	0.0200
125	86/87/97/108/119/125	35.761	1.59	(3.00)	(0.0000)	0.240
126	00/07/97/100/119/123	33.701	1.59	(5.00) ND		0.240
127				ND ND		0.0100
128	128/166	44.580	1.23	0.0965		0.0200
129	129/138/163	43.272	1.32	1.49		0.0600
130	129/130/103	42.551	1.11	0.0724		0.0100
131				0.0724 ND		0.0100
132		40.003	1.15	0.736		0.0100
133		40.003	1.15	0.730 ND		0.0100
134	134/143	38.880	1.38	0.155		0.0200
135	135/151	37.672	1.22	1.56		0.0200
136	133/131	34.973	1.20	0.732		0.0200
137		42.803	1.38	0.732		0.0100
137	129/138/163	43.272	1.30	(1.49)		0.0600
130	139/140	43.272	1.32	(1.49) ND		0.0200
140	139/140			ND ND		0.0200
	139/140	42.166	1.31	0.393		
141		42.100	1.31			0.0200
142	124/142			ND (0.155)		0.0100
143	134/143	38.880	1.38	(0.155)		0.0200
144		38.293	1.33	0.208		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

HRS Reference #69

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Dining Room AQ02486 10220944009 P130306A 11

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146		41.277	1.15	0.261		0.0100
147	147/149	38.678	1.25	2.48		0.0200
148	-			ND		0.0100
149	147/149	38.678	1.25	(2.48)		0.0200
150				` NĎ		0.0100
151	135/151	37.672	1.22	(1.56)		0.0200
152				` NĎ		0.0100
153	153/168	41.948	1.27	1.66		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157	47.648	1.29	0.0482		0.0200
157	156/157	47.648	1.29	(0.0482)		0.0200
158				` NĎ		0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162				ND		0.0100
163	129/138/163	43.272	1.32	(1.49)		0.0600
164		42.954	1.10	0.107		0.0100
165				ND		0.0100
166	128/166	44.580	1.23	(0.0965)		0.0200
167	450/400		4.07	NĎ		0.0200
168	153/168	41.948	1.27	(1.66)		0.0400
169		 FO 40F		ND	0.0500	0.0120
170	474/470	50.465	0.70 l 1.34 l	 	0.0569	0.0100
171	171/173	46.726		ND	0.0448	0.0200
172 173	171/173	 46.726	 1.34 I		(0.0448)	0.0100 0.0200
173	17 1/173	45.619	1.00	0.192	(0.0446)	0.0200
175		45.019	1.00	0.192 ND		0.0100
176		41.763	0.96	0.0985		0.0100
177		46.056	0.96	0.119		0.0100
178		43.792	0.94	0.0774		0.0100
179		40.808	1.00	0.314		0.0100
180	180/193	49.157	1.14	0.249		0.0400
181	100,100			ND		0.0100
182				ND		0.0100
183	183/185	45.368	1.44 I		0.144	0.0200
184				ND		0.0100
185	183/185	45.368	1.44 I		(0.144)	0.0200
186				ND		0.0100
187		44.731	1.00	0.447		0.0100
188				ND		0.0100
189				ND		0.0200
190		51.035	0.96	0.0192		0.0100
191				ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

HRS Reference #69

ľ

Pace Analytical[™]

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Dining Room AQ02486 10220944009 P130306A 11

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193	49.157	1.14	(0.249)		0.0400
194				` NĎ		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199	51.203	0.80	0.0461		0.0300
199	198/199	51.203	0.80	(0.0461)		0.0300
200	197/200			` NĎ		0.0300
201		47.179	0.85	0.0177		0.0150
202		46.223	0.83	0.0358		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

HRS Reference #69

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 406 Dining Room AQ02486 10220944009 P130306A_11

Congener Group	Concentration ng/S	_
		_
Total Monochloro Biphenyls	2.51	
Total Dichloro Biphenyls	82.3	
Total Trichloro Biphenyls	356	
Total Tetrachloro Biphenyls	231	
Total Pentachloro Biphenyls	29.4	
Total Hexachloro Biphenyls	10.0	
Total Heptachloro Biphenyls	1.52	
Total Octachloro Biphenyls	0.0996	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	713	

ND = Not Detected

Tel: 612-607-1700

Fax: 612-607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Analyzed

Client's Sample ID 410 Basement AQ02487

Lab Sample ID 10220944010 Filename P130306A_12

Injected By **CVS**

Method Blank ID

PUF Total Amount Extracted 1.00 Sample Matrix % Moisture NA Dilution

BLANK-35566

Dry Weight Extracted NA Collected 02/21/2013 13:14 ICAL ID P130306A02 Received 02/23/2013 09:30 CCal Filename(s) P130306A 01 Extracted 02/28/2013 12:30

PCB Isomer **IUPAC** ng's Found % Recovery RT Ratio ng's Added Labeled Analytes
13C-2-MoCB
13C-4-MoCB
13C-2,2'-DiCB
13C-4,4'-DiCB
13C-2,2',6-TrCB
13C-3,4,4'-TrCB
13C-3,4,4',5-TeCB
13C-3,3',4,4'-TeCB
13C-2,2',4,6,6'-PeCB
13C-2,3',4,4',5-PeCB
13C-2,3',4,4',5-PeCB
13C-2,3',4,4',5-PeCB
13C-2,3',4,4',5-PeCB
13C-3,3',4,4',5-PeCB Labeled Analytes 2.69 2.0 8.791 0.653 33 3 12.134 2.96 2.0 0.844 42 12.481 1.56 2.0 55 1.11 15 20.545 2.0 0.763 38 1.52 19 16.843 1.00 2.0 1.14 57 2.0 37 29.106 40 1.03 0.792 20.890 0.78 2.0 1.09 54 81 36.735 0.897 45 0.76 2.0 37.339 0.77 2.0 0.94747 27.664 2.0 73 104 1.65 1.46 105 41.145 1.60 2.0 1.02 51 51 51 114 40.457 1.49 2.0 1.03 2.0 39.904 1.58 118 1.01 13C-2,3',4,4',5'-PeCB 13C-3,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-HxCB (156/157) 13C-2,3',4,4',5,5'-HxCB 13C-3,3',4,4',5,5'-HpCB 13C-2,2',3,4',5,6,6'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB 13C-DeCB 123 39.552 1.56 2.0 1.00 50 50 126 44.481 1.53 2.0 1.01 34.220 1.21 2.0 82 155 1.64 156/157 47.667 4.0 2.09 52 1.38 167 46.476 1.25 2.0 1.10 55 52 71 169 51.087 1.34 2.0 1.05 2.0 188 40.457 1.05 1.42 45 189 54.000 0.93 2.0 0.892 0.90 76 202 46.191 2.0 1.52 205 56.650 0.92 2.0 1.42 71 57.577 0.78 2.0 2.12 106 206 208 53.375 0.81 2.0 1.38 69 209 58.504 0.73 2.0 2.15 108 Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 28 1.02 2.0 24.361 0.811 41 37.439 1.55 2.0 111 1.37 68 13C-2,2',3,3',5,5',6-HpCB 178 43.760 1.08 2.0 2.00 100 Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 9 2.0 NA NA 26.574 0.77 2.0 52 NA NA 34.438 1.65 2.0 NA 101 NΑ 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB 2.0 138 43.240 1.24 NA NA 0.90 2.0 194 56.392 NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

03/06/2013 22:36

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

HRS Reference #69

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

410 Basement AQ02487 10220944010 P130306A 12

IUPAC	Co-elutions	- RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1				ND		0.0200
2				ND		0.0200
3		12.146	3.40	0.0224		0.0200
				ND		0.100
4 5 6				ND		0.0200
6		16.507	1.34	0.0474		0.0200
7				ND		0.0200
8				ND		0.250
9				ND		0.0200
10		12.733	1.34	0.600		0.0200
11				ND		0.139
12	12/13			ND		0.0100
13	12/13			ND		0.0100
14				ND		0.0100
15				ND		0.132
16				ND		0.100
17		19.922	1.10	0.167		0.100
18	18/30	19.359	1.17	0.233		0.200
19		16.879	1.03	3.85		0.0264
20	20/28			ND		0.516
21	21/33			ND		0.540
22				ND		0.380
23				ND		0.00500
24		20.354	0.67 I		0.181	0.0200
25	00/00			ND		0.100
26	26/29	23.355	1.19	0.0752		0.0400
27	00/00	20.198	0.97	0.670		0.0200
28	20/28			ND (0.0750)		0.516
29	26/29	23.355	1.19	(0.0752)		0.0400
30	18/30	19.359	1.17	(0.233)		0.200
31			4.00	NĎ		0.520
32	04/00	21.192	1.02	1.24		0.100
33 34	21/33			ND ND		0.540
3 4 35				ND ND		0.00500 0.0200
36				ND ND		0.0200
37				ND ND		0.0100
38				ND ND		0.0100
39				ND ND		0.0100
40	40/41/71	28.955	0.79	1.12		0.120
41	40/41/71	28.955	0.79	(1.12)		0.120
42	70/71//1	28.335	0.85	0.704		0.200
43	43/73	26.860	0.03	0.110		0.0200
44	44/47/65	27.731	0.79	2.14		0.600
45	45/51	24.428	0.79	2.26		0.0800
46	.0/01	24.831	0.81	0.880		0.0100
47	44/47/65	27.731	0.79	(2.14)		0.600
48	11700	27.497	0.72	0.352		0.200
. •		····				

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Basement AQ02487 10220944010 P130306A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69	27.178	0.79	1.97		0.400
50	50/53	23.640	0.72	2.16		0.0200
51	45/51	24.428	0.79	(2.26)		0.0800
52		26.608	0.78	3.02		0.492
53	50/53	23.640	0.72	(2.16)		0.0200
54		20.907	0.49 I		0.0463	0.0100
55				ND		0.0100
56				ND		0.200
57				ND		0.0100
58				ND		0.0100
59	59/62/75	28.117	0.75	0.316		0.0300
60				ND		0.200
61	61/70/74/76			ND		0.800
62	59/62/75	28.117	0.75	(0.316)		0.0300
63				ND		0.0100
64		29.174	0.76	0.578		0.200
65	44/47/65	27.731	0.79	(2.14)		0.600
66				ND		0.336
67				ND		0.0100
68	40.400			ND		0.0100
69	49/69	27.178	0.79	(1.97)		0.400
70	61/70/74/76			ND		0.800
71	40/41/71	28.955	0.79	(1.12)		0.120
72 72	40/70	26.860		ND (0.110)		0.0100
73	43/73		0.77	(0.110)		0.0200
74 75	61/70/74/76	 28.117	 0.75	ND (0.316)		0.800
75 76	59/62/75 61/70/74/76	20.11 <i>1</i> 	0.75	(0.316) ND		0.0300 0.800
76 77	01/70/74/70			ND ND		0.0400
7 <i>1</i> 78				ND ND		0.0400
70 79				ND		0.0100
80				ND		0.0100
81				ND		0.0120
82				ND		0.0400
83				ND		0.0100
84		32.342	2.26 I		0.177	0.0400
85	85/116/117			ND		0.120
86	86/87/97/108/119/125			ND		0.240
87	86/87/97/108/119/125			ND		0.240
88	88/91	32.108	1.41	0.134		0.0200
89				ND		0.0100
90	90/101/113			ND		0.120
91	88/91	32.108	1.41	(0.134)		0.0200
92		33.818	1.50	0.0348		0.0100
93	93/98/100/102			ND		0.0400
94				ND		0.0200
95		31.135	1.44	0.743		0.0760
96		28.083	1.45	0.0452		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Basement AQ02487 10220944010 P130306A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
97	86/87/97/108/119/125			ND		0.240
98	93/98/100/102			ND		0.0400
99				ND		0.200
100	93/98/100/102			ND		0.0400
101	90/101/113			ND		0.120
102	93/98/100/102			ND		0.0400
103				ND		0.0100
104				ND		0.0100
105				ND		0.200
106				ND		0.0100
107	107/124			ND		0.0200
108	86/87/97/108/119/125			ND		0.240
109				ND		0.0100
110	110/115			ND		0.400
111				ND		0.0100
112	00/404/440			ND		0.0100
113	90/101/113			ND		0.120
114	110/115			ND ND		0.0100
115	110/115			ND ND		0.400
116	85/116/117			ND ND		0.120
117 118	85/116/117			ND ND		0.120 0.256
119	86/87/97/108/119/125			ND ND		0.230
120	80/8//9//108/119/123			ND ND		0.240
121				ND		0.0100
122				ND ND		0.0100
123				ND		0.0100
124	107/124			ND		0.0200
125	86/87/97/108/119/125			ND		0.240
126	00/01/01/100/110/120			ND		0.0100
127				ND		0.0100
128	128/166	44.582	1.08	0.0356		0.0200
129	129/138/163	43.274	1.26	0.119		0.0600
130				ND		0.0100
131				ND		0.0100
132		40.005	1.38	0.142		0.0100
133				ND		0.0100
134	134/143			ND		0.0200
135	135/151	37.691	1.17	0.161		0.0200
136		34.958	1.25	0.0787		0.0100
137				ND		0.0100
138	129/138/163	43.274	1.26	(0.119)		0.0600
139	139/140			ND		0.0200
140	139/140			ND		0.0200
141				ND		0.0200
142	404/440			ND		0.0100
143	134/143		4.50.1	ND	0.0040	0.0200
144		38.278	1.53 I		0.0219	0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Basement AQ02487 10220944010 P130306A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146		41.312	1.95 I		0.0188	0.0100
147	147/149	38.646	1.21	0.306		0.0200
148				ND		0.0100
149	147/149	38.646	1.21	(0.306)		0.0200
150				ND		0.0100
151	135/151	37.691	1.17	(0.161)		0.0200
152				` NĎ		0.0100
153	153/168	41.949	1.22	0.0490		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157			ND		0.0200
157	156/157			ND		0.0200
158				ND		0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162				ND		0.0100
163	129/138/163	43.274	1.26	(0.119)		0.0600
164				ND		0.0100
165				ND		0.0100
166	128/166	44.582	1.08	(0.0356)		0.0200
167	450/400			NĎ		0.0200
168	153/168	41.949	1.22	(0.0490)		0.0400
169				ND ND		0.0120
170 171	171/173			ND ND		0.0100
171	1/1/1/3			ND ND		0.0200
172	171/173			ND		0.0100 0.0200
173	17 17 17 3			ND ND		0.0200
175				ND ND		0.0100
176		41.748	0.86 I		0.0130	0.0100
177			0.001	ND	0.0130	0.0100
178				ND		0.0100
179		40.809	0.82 I		0.0124	0.0100
180	180/193			ND		0.0400
181				ND		0.0100
182				ND		0.0100
183	183/185			ND		0.0200
184				ND		0.0100
185	183/185			ND		0.0200
186				ND		0.0100
187		44.749	1.53 I		0.0376	0.0100
188				ND		0.0100
189				ND		0.0200
190				ND		0.0100
191				ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Basement AQ02487 10220944010 P130306A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202		46.258	0.82	0.0259		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208		53.417	1.10 I		0.0214	0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Basement AQ02487 10220944010 P130306A_12

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.0224	
Total Dichloro Biphenyls	0.647	
Total Trichloro Biphenyls	6.24	
Total Tetrachloro Biphenyls	15.6	
Total Pentachloro Biphenyls	0.957	
Total Hexachloro Biphenyls	0.892	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	0.0259	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	24.4	

ND = Not Detected

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client - Pace Analytical

Analyzed

410 Living Room AQ02488 Client's Sample ID

Lab Sample ID 10220944011 Filename P130307A_12

CVS Injected By

PUF Total Amount Extracted 1.00 Sample Matrix % Moisture NA Dilution

Dry Weight Extracted NA Collected 02/21/2013 13:23 ICAL ID P130307A05 Received 02/23/2013 09:30 P130307A 04 CCal Filename(s) Extracted 02/28/2013 12:30 Method Blank ID **BLANK-35566** 03/07/2013 22:08

PCB Isomer **IUPAC** ng's Found % Recovery RT Ratio ng's Added Labeled Analytes
13C-2-MoCB
13C-4-MoCB
13C-2,2'-DiCB
13C-4,4'-DiCB
13C-2,2',6-TrCB
13C-3,4,4'-TrCB
13C-3,4,4',5-TeCB
13C-3,3',4,4'-TeCB
13C-2,2',4,6,6'-PeCB
13C-2,3',4,4',5-PeCB
13C-2,3',4,4',5-PeCB
13C-2,3',4,4',5-PeCB
13C-2,3',4,4',5-PeCB
13C-3,3',4,4',5-PeCB Labeled Analytes 2.0 55 3.05 8.815 1.09 3 12.170 2.73 2.0 0.961 48 0.767 12.494 1.59 2.0 38 15 2.0 50 20.533 1.62 1.01 19 16.795 1.07 2.0 1.02 51 2.0 37 29.107 1.06 63 1.26 20.874 0.82 2.0 1.05 52 81 36.737 65 0.81 2.0 1.30 0.80 37.341 2.0 1.35 68 27.665 2.0 60 104 1.60 1.19 72 72 71 105 41.131 1.60 2.0 1.45 114 40.460 1.62 2.0 1.44 2.0 39.890 118 1.63 1.41 123 39.538 1.60 2.0 1.39 69 13C-2,3,4,4,5-PeCB 13C-3,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-HxCB (156/157) 13C-2,3',4,4',5,5'-HxCB 64 126 44.468 1.59 2.0 1.28 34.205 1.32 2.0 76 155 1.51 156/157 47.654 4.0 81 1.28 3.25 167 46.464 1.27 2.0 1.66 83 13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 83 169 51.092 1.27 2.0 1.65 2.0 63 188 40.443 1.03 1.25 13C-2,2,3,4,5,6,6-PDCB 13C-2,3,3',4,4',5,5'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 54.009 189 1.06 2.0 1.26 63 67 202 0.89 1.34 46.179 2.0 205 56.661 2.0 1.53 76 0.89 57.588 0.78 2.0 1.77 88 206 208 53.384 0.81 2.0 1.30 65 13C--DeCB 2.0 209 58.493 0.721.53 Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 28 2.0 24.361 1.07 1.32 66 37.442 1.59 2.0 69 111 1.39 13C-2,2',3,3',5,5',6-HpCB 178 43.730 1.08 2.0 1.75 88 Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 9 15.274 1.60 2.0 NA NA 26.575 2.0 52 0.82 NA NA 2.0 NA 101 34.457 1.61 NΑ 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB 2.0 138 43.227 1.29 NA NA 2.0 194 56.381 0.89 NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Tel: 612-607-1700

Fax: 612-607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Living Room AQ02488 10220944011 P130307A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1		 11.955	 2.91	ND 0.0331 B		0.0200 0.0200
2 3		12.206	3.52	0.0331 B 0.107		0.0200
3 4		12.506	3.52 1.63	0.107		0.0200
5		12.506	1.03	0.262 ND		0.0200
6		15.861	1.39	0.138		0.0200
7		15.513	1.63	0.136		0.0200
8		16.448	1.51	0.326		0.250
9		15.298	1.26 I	0.320	0.0283	0.0200
10		12.745	1.63	0.558	0.0203	0.0200
11		19.754	1.61	1.05 B		0.139
12	12/13	20.162	1.60	0.0654		0.0100
13	12/13	20.162	1.60	(0.0654)		0.0100
14	12/10			ND		0.0100
15		20.557	1.48	0.200		0.132
16		20.462	0.92	0.190		0.100
17		19.886	1.08	0.302		0.100
18	18/30	19.347	1.03	0.520		0.200
19		16.807	1.06	3.80		0.0264
20	20/28	24.378	1.07	0.958		0.516
21	21/33			ND		0.540
22				ND		0.380
23				ND		0.00500
24		20.330	1.01	0.173		0.0200
25		23.640	1.13	0.115		0.100
26	26/29	23.355	1.06	0.208		0.0400
27		20.162	1.10	0.598		0.0200
28	20/28	24.378	1.07	(0.958)		0.516
29	26/29	23.355	1.06	(0.208)		0.0400
30	18/30	19.347	1.03	(0.520)		0.200
31		24.026	1.07	`0.61Ŕ		0.520
32		21.159	1.06	1.74		0.100
33	21/33			ND		0.540
34				ND		0.00500
35				ND		0.0200
36				ND		0.0100
37				ND		0.212
38				ND		0.0100
39				ND		0.0100
40	40/41/71	28.940	0.77	0.856		0.120
41	40/41/71	28.940	0.77	(0.856)		0.120
42		28.353	0.75	0.567		0.200
43	43/73	26.877	0.76	0.0592		0.0200
44	44/47/65	27.732	0.80	1.70		0.600
45	45/51	24.445	0.78	1.36		0.0800
46		24.814	0.77	0.461		0.0100
47	44/47/65	27.732	0.80	(1.70)		0.600
48		27.514	0.79	0.380		0.200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Minneapolis, MN 55414

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename

410 Living Room AQ02488 10220944011 P130307A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
49	49/69	27.179	0.78	1.51		0.400
50	50/53	23.640	0.80	1.23		0.0200
51	45/51	24.445	0.78	(1.36)		0.0800
52		26.608	0.77	2.22		0.492
53	50/53	23.640	0.80	(1.23)		0.0200
54		20.907	1.01 I		0.0488	0.0100
55				ND		0.0100
56				ND		0.200
57				ND		0.0100
58				ND		0.0100
59	59/62/75	28.118	0.79	0.209		0.0300
60				ND		0.200
61	61/70/74/76			ND		0.800
62	59/62/75	28.118	0.79	(0.209)		0.0300
63				ND		0.0100
64	444705	29.208	0.79	0.536		0.200
65	44/47/65	27.732	0.80	(1.70)		0.600
66				ND		0.336
67				ND		0.0100
68	10/00	30.549	0.86	0.0202		0.0100
69	49/69	27.179	0.78	(1.51)		0.400
70	61/70/74/76			ND (0.050)		0.800
71 72	40/41/71	28.940	0.77	(0.856)		0.120
72 73	42/72	 26.877	0.76	ND (0.0592)		0.0100
73 74	43/73 61/70/74/76	20.077	0.76	(0.0592) ND		0.0200 0.800
74 75	59/62/75	28.118	0.79	(0.209)		0.0300
75 76	61/70/74/76	20.110	0.79	(0.209) ND		0.800
70 77	01/10/14/10			ND ND		0.0400
78				ND		0.0100
79				ND		0.0100
80				ND		0.0100
81				ND		0.0120
82				ND		0.0400
83				ND		0.0100
84		32.327	1.75	0.0903		0.0400
85	85/116/117			ND		0.120
86	86/87/97/108/119/125			ND		0.240
87	86/87/97/108/119/125			ND		0.240
88	88/91	32.092	1.45	0.0530		0.0200
89				ND		0.0100
90	90/101/113	34.490	1.42	0.183		0.120
91	88/91	32.092	1.45	(0.0530)		0.0200
92		33.836	1.65	`0.035 4		0.0100
93	93/98/100/102			ND		0.0400
94				ND		0.0200
95		31.136	1.75	0.317		0.0760
96		28.084	1.42	0.0170		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Living Room AQ02488 10220944011 P130307A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
97	86/87/97/108/119/125			ND		0.240
98	93/98/100/102			ND		0.0400
99				ND		0.200
100	93/98/100/102			ND		0.0400
101	90/101/113	34.490	1.42	(0.183)		0.120
102	93/98/100/102			` NĎ		0.0400
103				ND		0.0100
104				ND		0.0100
105				ND		0.200
106	107/101			ND		0.0100
107	107/124			ND		0.0200
108	86/87/97/108/119/125			ND		0.240
109	440/445			ND		0.0100
110	110/115			ND ND		0.400
111 112				ND ND		0.0100 0.0100
112	90/101/113	 34.490	1.42	(0.183)		0.0100
113	90/101/113	34.490	1.42	(0.163) ND		0.0100
115	110/115			ND ND		0.400
116	85/116/117			ND		0.120
117	85/116/117			ND		0.120
118	09/110/11/			ND		0.256
119	86/87/97/108/119/125			ND		0.240
120	00,01,01,100,110,120			ND		0.0100
121				ND		0.0100
122				ND		0.0100
123				ND		0.0100
124	107/124			ND		0.0200
125	86/87/97/108/119/125			ND		0.240
126				ND		0.0100
127				ND		0.0100
128	128/166			ND		0.0200
129	129/138/163	43.261	1.23	0.102		0.0600
130				ND		0.0100
131		 20.057	 4 45 l	ND	0.0202	0.0100
132 133		39.957	1.45 l 	ND	0.0362	0.0100 0.0100
134	134/143			ND ND		0.0200
135	135/151	37.660	1.24	0.0877		0.0200
136	133/131	34.977	1.36	0.0353		0.0200
137		J 4 .911	1.50	ND		0.0100
138	129/138/163	43.261	1.23	(0.102)		0.0600
139	139/140			ND		0.0200
140	139/140			ND		0.0200
141		42.137	1.27	0.0310		0.0200
142				ND		0.0100
143	134/143			ND		0.0200
144		38.280	1.46 I		0.0109	0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Tel: 612-607-1700

Fax: 612-607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Living Room AQ02488 10220944011 P130307A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
145				ND		0.0400
146		41.299	1.23	0.0191		0.0100
147	147/149	38.666	1.40	0.168		0.0200
148				ND		0.0100
149	147/149	38.666	1.40	(0.168)		0.0200
150				` NĎ		0.0100
151	135/151	37.660	1.24	(0.0877)		0.0200
152				ND		0.0100
153	153/168	41.936	1.18	0.130		0.0400
154				ND		0.0100
155				ND		0.0100
156	156/157			ND		0.0200
157	156/157			ND		0.0200
158				ND		0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162	400/400/400	40.004	4.00	ND (0.400)		0.0100
163	129/138/163	43.261	1.23	(0.102)		0.0600
164				NĎ		0.0100
165	100/100			ND		0.0100
166 167	128/166			ND ND		0.0200
168	153/168	41.936	 1.18	(0.130)		0.0200 0.0400
169	155/106	41.930	1.10	(0.130) ND		0.0400
170		50.455	0.99	0.0204		0.0120
170	171/173	50.455	0.99	0.0204 ND		0.0200
172	17 17173			ND ND		0.0100
173	171/173			ND		0.0200
174	17 17 17 0	45.575	0.92	0.0561		0.0100
175				ND		0.0100
176				ND		0.0100
177		46.044	1.21 I		0.0189	0.0100
178		43.747	0.99	0.0133		0.0100
179		40.812	1.03	0.0450		0.0100
180	180/193	49.164	1.13	0.106		0.0400
181				ND		0.0100
182				ND		0.0100
183	183/185	45.407	1.11	0.0522		0.0200
184				ND		0.0100
185	183/185	45.407	1.11	(0.0522)		0.0200
186				NĎ		0.0100
187		44.736	1.04	0.110		0.0100
188				ND		0.0100
189				ND		0.0200
190				ND		0.0100
191				ND		0.0100
192				ND		0.0100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700

Fax: 612- 607-6444

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Living Room AQ02488 10220944011 P130307A 12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
193	180/193	49.164	1.13	(0.106)		0.0400
194				ND		0.0150
195				ND		0.0150
196		51.914	0.86	0.0171		0.0150
197	197/200			ND		0.0300
198	198/199	51.243	0.98	0.0402		0.0300
199	198/199	51.243	0.98	(0.0402)		0.0300
200	197/200			` NĎ		0.0300
201				ND		0.0150
202		46.162	0.80	0.0246		0.0150
203		52.165	0.66 I		0.0204	0.0150
204				ND		0.0150
205				ND		0.0150
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename 410 Living Room AQ02488 10220944011 P130307A_12

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.140	
Total Dichloro Biphenyls	2.65	
Total Trichloro Biphenyls	9.23	
Total Tetrachloro Biphenyls	11.1	
Total Pentachloro Biphenyls	0.696	
Total Hexachloro Biphenyls	0.572	
Total Heptachloro Biphenyls	0.403	
Total Octachloro Biphenyls	0.0820	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	24.9	

ND = Not Detected

Minneapolis, MN 55414

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668C Polychlorobiphenyl **Blank Analysis Results**

BLANK-35566 Lab Sample ID Filename P130305B 06 Injected By **CVS**

PUF Matrix 02/28/2013 12:30 Total Amount Extracted 1.00 Sample Extracted

ICAL ID P130305B02 Analyzed 03/06/2013 03:38 P130305B 01 Dilution CCal Filename(s)

CCal Filename(s)	P130305B	_01		Dilution	3	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4'-5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',3,4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	8.467 11.846 12.193 20.472 16.674 29.105 20.788 36.718 37.338 27.629 41.128 40.457 39.887 39.535 44.465 34.202 47.668 46.460 51.105 40.440 54.006 46.175 56.657 57.583 53.381 58.489	2.79 3.09 1.54 1.55 1.11 1.07 0.81 0.84 0.79 1.54 1.60 1.63 1.62 1.57 1.61 1.32 1.28 1.28 1.28 1.28 1.06 1.09 0.92 0.90 0.78 0.84 0.68	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.539 0.638 0.529 0.666 0.646 1.01 0.828 1.10 1.18 0.995 1.28 1.32 1.30 1.29 1.14 1.29 3.04 1.49 1.45 1.11 1.17 1.19 1.38 1.59 1.19 1.34	27 32 26 33 32 51 41 55 59 64 66 65 57 64 76 75 73 55 59 59 69 79 59
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.309 37.422 43.727	1.08 1.64 1.09	2.0 2.0 2.0	1.07 1.29 1.59	54 64 80
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.129 26.539 34.437 43.224 56.376	1.58 0.81 1.67 1.32 0.91	2.0 2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-35566 P130305B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
1				ND		0.0200
2		11.606	2.88	0.0286		0.0200
2 3				ND		0.0200
4				ND		0.100
5				ND		0.0200
5 6				ND		0.0200
7				ND		0.0200
8				ND		0.250
9				ND		0.0200
10				ND		0.0200
11		19.681	1.56	0.189		0.139
12	12/13			ND		0.0100
13	12/13			ND		0.0100
14				ND		0.0100
15				ND		0.132
16				ND		0.100
17				ND		0.100
18	18/30			ND		0.200
19	10,00			ND		0.0264
20	20/28			ND		0.516
21	21/33			ND		0.540
22	2.700			ND		0.380
23				ND		0.00500
24				ND		0.0200
25				ND		0.100
26	26/29			ND		0.0400
27	20,20			ND		0.0200
28	20/28			ND		0.516
29	26/29			ND		0.0400
30	18/30			ND		0.200
31				ND		0.520
32				ND		0.100
33	21/33			ND		0.540
34				ND		0.00500
35				ND		0.0200
36				ND		0.0100
37				ND		0.212
38				ND		0.0100
39				ND		0.0100
40	40/41/71			ND		0.120
41	40/41/71			ND		0.120
42	19/11//1			ND		0.200
43	43/73			ND		0.0200
44	44/47/65			ND		0.600
45	45/51			ND		0.0800

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

RT = Retention Time
I = Interference

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-35566 P130305B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
46				ND		0.0100
47	44/47/65			ND		0.600
48				ND		0.200
49	49/69			ND		0.400
50	50/53			ND		0.0200
51	45/51			ND		0.0800
52				ND		0.492
53	50/53			ND		0.0200
54				ND		0.0100
55				ND		0.0100
56				ND		0.200
57				ND		0.0100
58				ND		0.0100
59	59/62/75			ND		0.0300
60				ND		0.200
61	61/70/74/76			ND		0.800
62	59/62/75			ND		0.0300
63				ND		0.0100
64				ND		0.200
65	44/47/65			ND		0.600
66				ND		0.336
67				ND		0.0100
68	10/00			ND		0.0100
69	49/69			ND ND		0.400
70	61/70/74/76			ND		0.800
71 72	40/41/71			ND ND		0.120
72 73	43/73			ND ND		0.0100
73 74	43/73 61/70/74/76			ND ND		0.0200
74 75	59/62/75			ND ND		0.800 0.0300
75 76	61/70/74/76			ND ND		0.800
70 77	01/70/74/70			ND ND		0.0400
78				ND ND		0.0400
70 79				ND		0.0100
80				ND		0.0100
81				ND		0.0120
82				ND		0.0400
83				ND		0.0100
84				ND		0.0400
85	85/116/117			ND		0.120
86	86/87/97/108/119/125			ND		0.240
87	86/87/97/108/119/125			ND		0.240
88	88/91			ND		0.0200
89	-			ND		0.0100
90	90/101/113			ND		0.120

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-35566 P130305B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
91	88/91			ND		0.0200
92	33,31			ND		0.0100
93	93/98/100/102			ND		0.0400
94	00,00,100,102			ND		0.0200
95				ND		0.0760
96				ND		0.0100
97	86/87/97/108/119/125			ND		0.240
98	93/98/100/102			ND		0.0400
99	00/00/100/102			ND		0.200
100	93/98/100/102			ND		0.0400
101	90/101/113			ND		0.120
102	93/98/100/102			ND		0.0400
103	33/33/100/102			ND		0.0100
104				ND		0.0100
105				ND		0.200
106				ND		0.0100
107	107/124			ND		0.0200
108	86/87/97/108/119/125			ND		0.240
109	00/07/97/100/119/129			ND ND		0.0100
110	110/115			ND ND		0.0400
111	110/119			ND ND		0.0100
112				ND ND		0.0100
113	90/101/113			ND		0.120
114	30/101/110			ND		0.0100
115	110/115			ND		0.0400
116	85/116/117			ND		0.120
117	85/116/117			ND		0.120
118	33, 113, 111			ND		0.256
119	86/87/97/108/119/125			ND		0.240
120	00,01,01,100,110,120			ND		0.0100
121				ND		0.0100
122				ND		0.0100
123				ND		0.0100
124	107/124			ND		0.0200
125	86/87/97/108/119/125			ND		0.240
126	00,01,01,100,100,100			ND		0.0100
127				ND		0.0100
128	128/166			ND		0.0200
129	129/138/163			ND		0.0600
130				ND		0.0100
131				ND		0.0100
132				ND		0.0100
133				ND		0.0100
134	134/143			ND		0.0200
135	135/151			ND		0.0200

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

REPORT OF LABORATORY ANALYSIS

Page 123 of 135

Method 1668C Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-35566 P130305B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
136				ND		0.0100
137				ND		0.0100
138	129/138/163			ND		0.0600
139	139/140			ND		0.0200
140	139/140			ND		0.0200
141	100/140			ND		0.0200
142				ND		0.0100
143	134/143			ND		0.0200
144	10-1/1-10			ND		0.0100
145				ND		0.0400
146				ND		0.0100
147	147/149			ND		0.0200
148	1477140			ND		0.0100
149	147/149			ND		0.0200
150	1477140			ND		0.0100
151	135/151			ND		0.0200
152	100/101			ND		0.0100
153	153/168			ND		0.0400
154	100/100			ND		0.0100
155				ND		0.0100
156	156/157			ND		0.0200
157	156/157			ND		0.0200
158				ND		0.200
159				ND		0.0100
160				ND		0.0100
161				ND		0.0100
162				ND		0.0100
163	129/138/163			ND		0.0600
164				ND		0.0100
165				ND		0.0100
166	128/166			ND		0.0200
167				ND		0.0200
168	153/168			ND		0.0400
169				ND		0.0120
170				ND		0.0100
171	171/173			ND		0.0200
172				ND		0.0100
173	171/173			ND		0.0200
174				ND		0.0100
175				ND		0.0100
176				ND		0.0100
177				ND		0.0100
178				ND		0.0100
179				ND		0.0100
180	180/193			ND		0.0400

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-35566 P130305B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/S	EMPC ng/S	EML ng/S
181				ND		0.0100
182				ND		0.0100
183	183/185			ND		0.0200
184				ND		0.0100
185	183/185			ND		0.0200
186				ND		0.0100
187				ND		0.0100
188				ND		0.0100
189				ND		0.0200
190				ND		0.0100
191				ND		0.0100
192				ND		0.0100
193	180/193			ND		0.0400
194				ND		0.0150
195				ND		0.0150
196				ND		0.0150
197	197/200			ND		0.0300
198	198/199			ND		0.0300
199	198/199			ND		0.0300
200	197/200			ND		0.0300
201				ND		0.0150
202				ND		0.0150
203				ND		0.0150
204				ND		0.0150
205				ND		15.0
206				ND		0.0300
207				ND		0.0150
208				ND		0.0150
209				ND		0.0184

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

REPORT OF LABORATORY ANALYSIS

Method 1668C Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKMP BLANK-35566 P130305B_06

Congener Group	Concentration ng/S	
Total Monochloro Biphenyls	0.0286	
Total Dichloro Biphenyls	0.189	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	0.218	

ND = Not Detected

Method 1668C Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)
Method Blank ID

LCS-35567 P130304A_03 1.00 Sample P130304A02 P130304A_01 BLANK-35566

Matrix PUF Dilution 3

Extracted 02/28/2013 12:30 Analyzed 03/04/2013 12:45

Injected By SMT

Native	Analytes

	ľ	Native Amary	les	Labeleu Allalytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	_ <u>_</u>
1	1.0	1.05	105	2.0	0.123	6	R
3	1.0	1.05	105	2.0	0.304	15	
4	1.0	1.10	110	2.0	0.321	16	
15	1.0	0.958	96	2.0	0.713	36	
19	1.0	0.932	93	2.0	0.653	33	
37	1.0	0.931	93	2.0	1.09	54	
54	1.0	0.998	100	2.0	0.857	43	
81	1.0	0.982	98	2.0	1.29	65	
77	1.0	0.921	92	2.0	1.42	71	
104	1.0	1.01	101	2.0	1.00	50	
105	1.0	0.958	96	2.0	1.53	77	
114	1.0	0.940	94	2.0	1.57	79	
118	1.0	1.03	103	2.0	1.51	76	
123	1.0	1.04	104	2.0	1.47	74	
126	1.0	0.997	100	2.0	1.44	72	
155	1.0	1.04	104	2.0	1.31	65	
156/157	2.0	1.93	97	4.0	3.72	93	
167	1.0	0.999	100	2.0	1.85	92	
169	1.0	0.954	95	2.0	1.87	93	
188	1.0	0.988	99	2.0	1.12	56	
189	1.0	0.974	97	2.0	1.36	68	
202	1.0	1.01	101	2.0	1.30	65	
205	1.0	1.12	112	2.0	1.66	83	
206	1.0	1.01	101	2.0	1.98	99	
208	1.0	0.978	98	2.0	1.40	70	
209	1.0	1.19	119	2.0	1.67	84	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms

I = Interference

Method 1668C Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCSD-35568 P130304A_04 1.00 Sample P130304A02 P130304A_01

BLANK-35566

Matrix PUF Dilution 3

Extracted 02/28/2013 12:30 Analyzed 03/04/2013 13:48

Injected By SMT

	N	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.07	107	2.0	0.546	27	
3	1.0	1.07	107	2.0	0.877	44	
4	1.0	1.03	103	2.0	0.853	43	
15	1.0	1.06	106	2.0	0.861	43	
19	1.0	1.05	105	2.0	0.901	45	
37	1.0	0.955	96	2.0	1.16	58	
54	1.0	1.03	103	2.0	1.03	52	
81	1.0	0.985	99	2.0	1.27	64	
77	1.0	0.944	94	2.0	1.41	70	
104	1.0	1.06	106	2.0	1.13	56	
105	1.0	1.00	100	2.0	1.46	73	
114	1.0	1.01	101	2.0	1.47	74	
118	1.0	1.14	114	2.0	1.41	70	
123	1.0	1.04	104	2.0	1.40	70	
126	1.0	1.01	101	2.0	1.26	63	
155	1.0	1.00	100	2.0	1.38	69	
156/157	2.0	2.02	101	4.0	3.21	80	
167	1.0	1.01	101	2.0	1.63	81	
169	1.0	0.979	98	2.0	1.60	80	
188	1.0	1.03	103	2.0	1.14	57	
189	1.0	1.000	100	2.0	1.26	63	
202	1.0	1.04	104	2.0	1.21	61	
205	1.0	1.13	113	2.0	1.55	77	
206	1.0	0.971	97	2.0	1.81	91	
208	1.0	0.960	96	2.0	1.28	64	
209	1.0	1.22	122	2.0	1.49	75	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms

I = Interference

Tel: 612-607-1700

Fax: 612- 607-6444

Method 1668C Spike Recovery Relative Percent Difference (RPD) Results

Client Pace Analytical

 Spike 1 ID
 LCS-35567
 Spike 2 ID
 LCSD-35568

 Spike 1 Filename
 P130304A_03
 Spike 2 Filename
 P130304A_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB 4-MoCB 2,2'-DiCB 4,4'-DiCB 2,2',6-TrCB 3,4,4'-TrCB 2,2',6,6'-TeCB 3,3',4,4'-TeCB 3,4,4',5-TeCB 2,2',4,6,6'-PeCB 2,3,3',4,4'-PeCB 2,3',4,4',5-PeCB 2,3',4,4',5-PeCB 2,3',4,4',5-PeCB 2,3',4,4',5-PeCB 2,3',4,4',5,5'-HxCB (156/157) 2,3',4,4',5,5'-HxCB 3,3',4,4',5,5'-HxCB 2,2',3,4',5,5'-HyCB 2,2',3,4',5,5'-HpCB 2,2',3,3',5,5',6,6'-OcCB 2,2',3,3',4,4',5,5',6-NoCB	10PAC 1 3 4 15 19 37 54 77 81 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206			%RPD 1.9 1.9 6.6 9.9 12.1 3.2 3.0 2.2 1.0 4.8 4.1 7.2 10.1 0.0 1.0 3.9 4.0 1.0 3.1 4.0 3.0 2.9 0.9 4.0	
2,2',3,3',4,5,5',6,6'-NoCB Decachlorobiphenyl	208 209	98 119	96 122	2.1 2.5	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

FIELD FORMS

HRS Reference #69 Page 130 of 135

					ng EPA	Method TO-10)A		
Project Nam	e: JARD -	-403 Par	k Street		P	roject #: <u>3 - 5</u>	2218-5		
Site Location	Benningt	on, VT	Sampler:	DPB	SJ Date	es Sampled:	7/20/13- 2/2		
Pump Type/	Model No. :	SKC 22	4-PCXR	8	Cali	brated By: DP	B/SJH		
Pump Serial	No. 807	36 917	482			Rain (Y or l	N?): <u>\</u>		
ABSORBEN	NT CARTRIDGE	E INFORMATIC	N:						
	Sorbent: Serial No.: 2-20-13 Sample No.: 403 living room								
Cartridge 1	Ambient	Ambient	Flow Rate	Sampling	Period	Total Sampling	Total Sample		
Time	Temp, °C / F	Pressure, in Hg	(Q), mL/min or L/min	Start	Stop	Time, min or hours	Volume, L		
	2100		4.05	1122	1118				
	2100		3.860	STOP					
Cartridge 2	2		4)		*				
Time	Ambient Temp, °C / F	Ambient Pressure, in	Flow Rate (Q), mL/min or L/min	Sampling Period		Total Sampling Time, min or hours	Total Sample Volume, L		
		Hg	or L/min	Start	Stop	Hours			
					-				
			_						
Cartridge 3	3								
Time	Ambient Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling		Total Sampling Time, min or hours	Total Sample Volume, L		
				Start	Stop				
							-		
Notes:									

						Method TO-10	
Project Name	: JARD	-406 P				roject #: <u>3-7</u>	
	:Benning	1			SJ Bate	es Sampled: 2/2	0/13-2/21/1
Pump Type/I	Model No. :	SKC 221	4-PCXR	8	Cali	brated By:D	10/274
Pump Serial	No. <u>belew</u>	/				Rain (Y or l	N?): <u>U</u>
ABSORBEN	T CARTRIDGI	E INFORMATIO	N:				
Type: Sorbent:	Pu	idge 1 E -1609	Cartridge 2 PUF 104007		artridge 3	_	
Serial No.: Sample No.:	unce	Dining Room	406 Base	ment	/		
SAMPLING Cartridge 1	DATA:	Losem	900 000				· · · · · · · · · · · · · · · · · · ·
Time	Ambient J Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling Start	Period Stop	Total Sampling Time, min or hours	Total Sample Volume, L
			1.5.1				
	2200		4.11	1240	1243		
	2400		3.500	Stop			
Cartridge 2	Basemer	1	t x		2		
Time	Ambient Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling Start	Period Stop	Total Sampling Time, min or hours	Total Sample Volume, L
	1100		4.01	1239	1244		
	1400		3.800	\$70P	•		
Cartridge 3							m 4.10
Time	Ambient Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling Start	Stop	Total Sampling Time, min or hours	Total Sample Volume, L
							-
Notes:				J	J		

	Air Sampling	g Form for PC	CBs and Pesti	cides usi	ng EPA	Method TO-10	DA
Project Nam	e: <u>JARD</u>	-410 Pa	ik stuck	4	P	roject #: <u>3-2</u>	218-5
Site Location	n: Benningt	on, ut	Sampler:	DPB	SJH Date	es Sampled: 2	20/13-2/21 006/5JH
Pump Type/	Model No.:	5KC	224-PC	XKO	Cali	brated By:	700/00
Pump Serial	No					Rain (Y or	N?): _ \ _
ABSORBEN	NT CARTRIDG	E INFORMATIO	ON:				
Type: Sorbent: Serial No.:	10	ridge 1	Cartridge 2 PO F 8 104(ot 917478)	F 1041	artridge 3		
Sample No.	: 410	Basement	410 Living	Page _		7	
SAMPLING Cartridge 1	BATA: Saseme	int	4	V		,	
Time	Temp, °C / F Pressu	Ambient Pressure, in Hg	ressure, in (Q), mL/min	Sampling Period		Total Sampling Time, min or hours	Total Sample Volume, L
		ng .	5	Start	Stop		
	1000		4.22	1:15	1314		
	135		3.7905	100			
Cartridge 2	Living	Room			Ť		
Time	Ambient J Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling Period		Total Sampling Time, min or hours	Total Sample Volume, L
				Start	Stop	nours	
	~20°C		4.07	1:30	1323		
	190C		4.13056	100			
	S 186		C	l v			
G + 112	,	2					
Cartridge 3	Ambient Temp, °C / F Pressure, in Hg	Flow Rate (Q), mL/min	Sampling Period		Total Sampling Time, min or	Total Sample Volume, L	
		Hg	or L/min	Start	Stop	hours	
Notes:							la .

THE JOHNSON COMPANY, INC. 100 State Street, Suite 600

100 State Street, Suite 600 Montpelier, Vermont 05602 (802) 229-4600

						Method TO-10		
Project Name: JARD - 414 Park Street Project #: 3-2218-8								
Site Location: Bennington, VT Sampler: Dates Sampled: 2/20/13 - 2/2								
Pump Type/Model No. : 6KC 224-PCXR8 Calibrated By: DPB/537								
Pump Serial No. See below Rain (Y or N?): N								
ABSORBENT CARTRIDGE INFORMATION:								
Type: Sorbent: 104(2) Serial No.: Sample No.: SAMPLING DATA: Cartridge 2 Cartridge 2 Cartridge 3 Cartridge 3 PUT PUT PUT PUT PUT PUT PUT PU								
Cartridge 1 Time	Ambient	Ambient	Flow Rate	Sampling	Period	Total Sampling	Total Sample	
	Temp, °C / F	Pressure, in Hg	(Q), mL/min or L/min	Start	Stop	Time, min or hours	Volume, L	
Struct	30°C		5.01	A922	0920			
STOV	200C		4.740	otop				
3/1				•				
Cartridge 2	Basema	ent	ALX		A			
Time	Ambient Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling Period Start Stop		Total Sampling Time, min or hours	Total Sample Volume, L	
Stall	70C.		1324	0919	0921			
Stro	700		3,790	Step				
219								
Cartridge 3								
Time	Ambient Temp, °C / F	Ambient Pressure, in	Flow Rate (Q), mL/min	Sampling Period		Total Sampling Time, min or	Total Sample Volume, L	
		Hg	or L/min	Start	Stop	hours		
						S STORY CONTRACTOR OF THE STOR		
Notes: * could not increase flow above 4.3 Umin								

		Form for PC				Method TO-10			
- 33400		n VT			SAL Date	es Sampled: 216	10/18-8/3/13		
	O			-	and the second				
Pump Type/Model No. : SKC 224-PCXR8 Calibrated By: DPB/801									
Pump Serial No. See below Rain (Y or N?): N									
ABSORBENT CARTRIDGE INFORMATION:									
Type: PUP PUP PUP Sorbent: 104606 164612 164614 Serial No.: 827740 827233 827665 Sample No.: 418 Basepart 418 Outdoor SAMPLING DATA:									
Cartridge 1	Kitchen	A	Flow Data	Sampling	David	Total Sampling	Total Sample		
Time	Ambient Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling	Stop	Time, min or hours	Volume, L		
	23° C		47-00	10360	1028				
	2500		4.970	STOP	1000				
				J					
Cartridge 2	Basema	ent-			VI				
Time	Ambient	Ambient	Flow Rate (Q), mL/min	Sampling Period		Total Sampling Time, min or	Total Sample Volume, L		
	Temp, °C / F	Pressure, in Hg	or L/min	Start	Stop	hours	, oranio, D		
	10720		4.98	- (//)	1043				
	1800		11010	1013	1078				
	10-C		7712	31013					
Cartridge 3	Outdo	a							
Time	Ambient Temp, °C / F	Ambient Pressure, in Hg	Flow Rate (Q), mL/min or L/min	Sampling Period Start Stop		Total Sampling Time, min or hours	Total Sample Volume, L		
	-3 00		4.70	1039	1034				
	-3.5°C		4800	Styp					
Notes:						·—————————————————————————————————————			